Bài 5.3 phần bài tập bổ sung trang 163 SBT toán 8 tập 1

2024-09-14 09:07:11

Đề bài

Cho tam giác vuông \(ABC,\) có hai cạnh góc vuông là \(AC = 6\,cm\) và \(AB = 8\,cm.\) Trên cạnh \(AC\) lấy điểm \(D\) sao cho \(CD = 5\,cm.\) Trên cạnh \(AB\) lấy điểm \(E\) sao cho \(EB = 5\,cm.\) Gọi \(M,\, N,\, P,\, Q\) tương ứng là trung điểm của các đoạn thẳng \(DE,\, DB,\, BC\) và \(CE.\) Tính diện tích của tứ giác \(MNPQ.\)

Phương pháp giải - Xem chi tiết

Áp dụng tính chất đường trung bình của tam giác: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết

+) Trong \(∆ EDC\) ta có:

\(M\) là trung điểm của \(ED\)

\(Q\) là trung điểm của \(EC\)

nên \(MQ\) là đường trung bình của \(∆ EDC\)

\(⇒ MQ = \dfrac{1}{2}CD = 2,5\, (cm)\) và \(MQ // CD\)

+) Trong \(∆ BDC\) ta có:

\(N\) là trung điểm của \(BD\)

\(P\) là trung điểm của \(BC\)

nên \(NP\) là đường trung bình của \(∆ BDC\)

\(⇒ NP = \dfrac{1}{2}CD = 2,5\, (cm)\)

+) Trong \(∆ DEB\) ta có:

\(M\) là trung điểm của \(DE\)

\(N\) là trung điểm của \(DB\)

nên \(MN\) là đường trung bình của \(∆ DEB\)

\(⇒ MN = \dfrac{1}{2}BE = 2,5\, (cm)\) và \(MN // BE\)

+) Trong \(∆ CEB\) ta có:

\(Q\) là trung điểm của \(CE\)

\(P\) là trung điểm của \(CB\)

nên \(QP\) là đường trung bình của \(∆ CEB\)

\(⇒ QP =  \dfrac{1}{2}BE = 2,5\, (cm)\)

Suy ra: \(MN = NP = PQ = QM \) (1)

\(MQ // CD\) hay \(MQ // AC\)

\(AC ⊥ AB\) (do tam giác ABC vuông tại A)

\(⇒ MQ ⊥ AB\)

Lại có: \(MN // BE\) hay \(MN // AB\)

Suy ra: \(MQ ⊥ MN\) hay \(\widehat {QMN} = 90^\circ \) (2)

Từ (1) và (2) suy ra tứ giác \(MNPQ\) là hình vuông

\({S_{MNPQ}} = M{N^2} = {\left( {2,5} \right)^2} = 6,25\) \((c{m^2})\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"