Bài 11 trang 6 SBT toán 8 tập 2

2024-09-14 09:07:39

Bằng quy tắc nhân, tìm giá trị gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ ba (dùng máy tính bỏ túi để tính toán). 

LG a

\(2x = \sqrt {13} \) 

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\(2x = \sqrt {13} \)

\( \displaystyle \Leftrightarrow \dfrac{2x}{2} = {{\sqrt {13} } \over 2} \)

\( \displaystyle \Leftrightarrow x = {{\sqrt {13} } \over 2} \Leftrightarrow x \approx 1,803\)


LG b

 \( - 5x = 1 + \sqrt 5 \)

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\( - 5x = 1 + \sqrt 5 \)

\( \displaystyle\Leftrightarrow \dfrac{-5x}{-5} =  - {{1 + \sqrt 5 } \over 5}\)

\( \displaystyle\Leftrightarrow x =  - {{1 + \sqrt 5 } \over 5} \Leftrightarrow x \approx  - 0,647\)


LG c

\( x\sqrt 2  = 4\sqrt 3 \)

Phương pháp giải:

Áp dụng quy tắc nhân với một số :

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác \(0\).

Lời giải chi tiết:

\(x\sqrt 2  = 4\sqrt 3 \)

\( \displaystyle\Leftrightarrow \dfrac{x\sqrt 2}{\sqrt 2} = {{4\sqrt 3 } \over {\sqrt 2 }}\)

\( \displaystyle\Leftrightarrow x = {{4\sqrt 3 } \over {\sqrt 2 }} \Leftrightarrow x \approx 4,899\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"