Bài 24 trang 8 SBT toán 8 tập 2

2024-09-14 09:07:40

Tìm các giá trị của \(x\) sao cho hai biểu thức \(A\) và \(B\) cho sau đây có giá trị bằng nhau: 

LG a

\(A = \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right)\)

\(B = {\left( {x - 4} \right)^2}\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có: \(A = B\)

\( \Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right) \) \(= {\left( {x - 4} \right)^2}\)

\( \Leftrightarrow {x^2} + 4x - 3x - 12 - 6x + 4 \) \(= {x^2} - 8x + 16  \)

\(  \Leftrightarrow {x^2} - {x^2} + 4x - 3x - 6x + 8x \) \(= 16 + 12 - 4\) 

\( \Leftrightarrow 3x = 24 \Leftrightarrow x = 8  \)

Vậy với \(x = 8\) thì \(A = B\).


LG b

\(A = \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2}\)

\(B = {\left( {2x + 1} \right)^2} + 2x\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có : \(A = B\)

\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2} \) \(= {\left( {2x + 1} \right)^2} + 2x\)

\( \Leftrightarrow {x^2} - 4 + 3{x^2} \) \(= 4{x^2} + 4x + 1 + 2x  \)

\( \Leftrightarrow {x^2} + 3{x^2} - 4{x^2} - 4x - 2x \) \( = 1 + 4  \)

\( \displaystyle \Leftrightarrow  - 6x = 5 \Leftrightarrow x =  - {5 \over 6} \)

Vậy với  \( \displaystyle  x =  - {5 \over 6} \) thì \(A = B\).


LG c

\(A = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x\)

\(B = x\left( {x - 1} \right)\left( {x + 1} \right)\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có: \(A = B\)

\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x \) \(= x\left( {x - 1} \right)\left( {x + 1} \right)\)

\(\eqalign{  &  \Leftrightarrow {x^3} - 1 - 2x = x\left( {{x^2} - 1} \right)  \cr  &  \Leftrightarrow {x^3} - 1 - 2x = {x^3} - x  \cr  &  \Leftrightarrow {x^3} - {x^3} - 2x + x = 1  \cr  &  \Leftrightarrow  - x = 1 \Leftrightarrow x =  - 1 \cr} \)

Vậy với \(x = -1\) thì \(A = B\).


LG d

\(A = {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3}\)

\(B = \left( {3x - 1} \right)\left( {3x + 1} \right)\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có : \(A = B\)

\( \Leftrightarrow {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3} \) \(= \left( {3x - 1} \right)\left( {3x + 1} \right)\)

\(  \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - {x^3} + 6{x^2} \) \( - 12x + 8  = 9{x^2} - 1  \)

\( \Leftrightarrow {x^3} - {x^3} + 3{x^2} + 6{x^2} - 9{x^2} + 3x \) \( - 12x  =  - 1 - 1 - 8  \)

\(\displaystyle  \Leftrightarrow  - 9x =  - 10 \Leftrightarrow x = {{10} \over 9} \)

Vậy với \(\displaystyle x = {{10} \over 9}\) thì \(A = B\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"