Bài 20 trang 8 SBT toán 8 tập 2

2024-09-14 09:07:40

Giải các phương trình sau:

LG a

\(\eqalign{& \,\,\,{{x - 3} \over 5} = 6 - {{1 - 2x} \over 3} \cr } \)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\dfrac{{x - 3}}{5} = 6 - \dfrac{{1 - 2x}}{3}\)

\(\Leftrightarrow\dfrac{{3\left( {x - 3} \right)}}{{15}} = \dfrac{{6.15}}{{15}} - \dfrac{{5\left( {1 - 2x} \right)}}{{15}}\)

 \( \Leftrightarrow 3\left( {x - 3} \right) = 6.15 - 5\left( {1 - 2x} \right)\)

\(\eqalign{  &  \Leftrightarrow 3x - 9 = 90 - 5 + 10x  \cr  &  \Leftrightarrow 3x - 10x = 90 - 5 + 9  \cr  &  \Leftrightarrow  - 7x = 94 \cr&\Leftrightarrow x =  - {{94} \over 7} \cr} \)

Vậy phương trình có tập nghiệm \(S = \left\{ { - \dfrac{{94}}{7}} \right\}.\)


LG b

\(\eqalign{& \,\,{{3x - 2} \over 6} - 5 = {{3 - 2\left( {x + 7} \right)} \over 4} \cr } \)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\displaystyle {{3x - 2} \over 6} - 5 = {{3 - 2\left( {x + 7} \right)} \over 4} \)
\( \displaystyle\Leftrightarrow {{2\left( {3x - 2} \right)} \over {12}} - {{5.12} \over {12}}\) \( \displaystyle = {{3\left[ {3 - 2\left( {x + 7} \right)} \right]} \over {12}} \)
\(\Leftrightarrow 2\left( {3x - 2} \right) - 5.12 \) \(= 3\left[ {3 - 2\left( {x + 7} \right)} \right] \)

\(\Leftrightarrow 6x - 4 - 60 = 9 - 6\left( {x + 7} \right) \)

\( \Leftrightarrow 6x - 64 = 9 - 6x - 42 \) 
\( \Leftrightarrow 6x + 6x = 9 - 42 + 64 \) 
\( \Leftrightarrow 12x = 31 \)
\( \displaystyle \Leftrightarrow x = {{31} \over {12}}  \)

Vậy phương trình có tập nghiệm \(S = \left\{ \dfrac{31}  {12} \right\}.\)


LG c

\(\eqalign{& \,\,2\left( {x + {3 \over 5}} \right) = 5 - \left( {{{13} \over 5} + x} \right) \cr } \)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\eqalign{
& 2\left( {x + {3 \over 5}} \right) = 5 - \left( {{{13} \over 5} + x} \right) \cr 
& \Leftrightarrow 2x + {6 \over 5} = {{25} \over 5} - {{13} \over 5} - x \cr 
& \Leftrightarrow 2x + {6 \over 5} = {{12} \over 5} - x \cr 
& \Leftrightarrow 2x + x = {{12} \over 5} - {6 \over 5} \cr 
& \Leftrightarrow 3x = {6 \over 5} \cr 
& \Leftrightarrow x = {6 \over 5}:3 \cr 
& \Leftrightarrow x = {2 \over 5} \cr} \)

Vậy phương trình có tập nghiệm \(S = \left\{ {\dfrac{2 }{ 5}} \right\}.\)


LG d

\(\eqalign{& \,\,{{7x} \over 8} - 5\left( {x - 9} \right) = {{20x + 1,5} \over 6} \cr} \)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\displaystyle {{7x} \over 8} - 5\left( {x - 9} \right) = {{20x + 1,5} \over 6} \)
\( \displaystyle \Leftrightarrow {{3.7x} \over {24}} - {{24.5\left( {x - 9} \right)} \over {24}} \)\(\displaystyle= {{4.\left( {20x + 1,5} \right)} \over {24}} \)
\( \Leftrightarrow 3.7x - 24.5\left( {x - 9} \right) \)\(= 4\left( {20x + 1,5} \right) \)
\( \Leftrightarrow 21x - 120\left( {x - 9} \right) = 80x + 6 \) 
\( \Leftrightarrow 21x - 120x + 1080 = 80x + 6 \)
\( \Leftrightarrow 21x - 120x - 80x = 6 - 1080 \) 
\( \Leftrightarrow - 179x = - 1074 \) 
\( \Leftrightarrow x = \left( { - 1074} \right):\left( { - 179} \right) \)
\( \Leftrightarrow x = 6  \)

Vậy phương trình có tập nghiệm \(S =\{ 6\}.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"