Bài 27 trang 10 SBT toán 8 tập 2

2024-09-14 09:07:42

Dùng máy tính bỏ túi để tính giá trị gần đúng các nghiệm của mỗi phương trình sau, làm tròn đến chữ số thập phân thứ ba.

LG a

\(\left( {\sqrt 3  - x\sqrt 5 } \right)\left( {2x\sqrt 2  + 1} \right) = 0\)

Phương pháp giải:

Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\left( {\sqrt 3  - x\sqrt 5 } \right)\left( {2x\sqrt 2  + 1} \right) = 0 \)

\(\Leftrightarrow \sqrt 3  - x\sqrt 5  = 0\) hoặc \(2x\sqrt 2  + 1 = 0\)

+) Với \(\sqrt 3  - x\sqrt 5  = 0 \) \( \displaystyle \Leftrightarrow x\sqrt 5=\sqrt 3\)\( \displaystyle \Leftrightarrow x = {{\sqrt 3 } \over {\sqrt 5 }} \approx 0,775\)

+) Với \(2x\sqrt 2  + 1 = 0 \) \( \displaystyle \Leftrightarrow 2x\sqrt 2  =-1\)\( \displaystyle \Leftrightarrow x =  - {1 \over {2\sqrt 2 }} \approx  - 0,354\)

Vậy phương trình có tập nghiệm \( \displaystyle S = \{0,775 ; -0,354 \}.\) 


LG b

\(\left( {2x - \sqrt 7 } \right)\left( {x\sqrt {10}  + 3} \right) = 0\)

Phương pháp giải:

Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\left( {2x - \sqrt 7 } \right)\left( {x\sqrt {10}  + 3} \right) = 0 \)

\(\Leftrightarrow 2x - \sqrt 7  = 0\) hoặc \(x\sqrt {10}  + 3 = 0\)

+) Với \(2x - \sqrt 7  = 0 \) \( \displaystyle \Leftrightarrow 2x=\sqrt 7\)\( \displaystyle \Leftrightarrow x = {{\sqrt 7 } \over 2} \approx 1,323\)

+) Với  \(x\sqrt {10}  + 3 = 0 \) \( \displaystyle \Leftrightarrow x\sqrt {10}  =-3 \)\( \displaystyle \Leftrightarrow x =  - {3 \over {\sqrt {10} }} \approx  - 0,949\)

Vậy phương trình có tập nghiệm \( \displaystyle S = \{1,323; -0,949\}.\)


LG c

\(\left( {2 - 3x\sqrt 5 } \right)\left( {2,5x + \sqrt 2 } \right) = 0\)

Phương pháp giải:

Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\left( {2 - 3x\sqrt 5 } \right)\left( {2,5x + \sqrt 2 } \right) =0 \)

\( \Leftrightarrow 2 - 3x\sqrt 5  = 0\) hoặc \(2,5x + \sqrt 2  = 0\)

+) Với  \(2 - 3x\sqrt 5  = 0 \) \( \displaystyle\Leftrightarrow -3x\sqrt 5=-2\)\( \displaystyle\Leftrightarrow x = {2 \over {3\sqrt 5 }} \approx 0,298\)

+) Với  \(2,5x + \sqrt 2  = 0 \) \( \displaystyle\Leftrightarrow 2,5x=-\sqrt 2\) \( \displaystyle \Leftrightarrow x = {{ - \sqrt 2 } \over {2,5}} \approx  - 0,566\)

Vậy phương trình có tập nghiệm \( \displaystyle S = \{0,298; -0,566\}.\)


LG d

\(\left( {\sqrt {13}  + 5x} \right)\left( {3,4 - 4x\sqrt {1,7} } \right) = 0\)

Phương pháp giải:

Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\left( {\sqrt {13}  + 5x} \right)\left( {3,4 - 4x\sqrt {1,7} } \right) = 0\)

\( \Leftrightarrow \sqrt {13}  + 5x = 0\) hoặc \(3,4 - 4x\sqrt {1,7}  = 0\)

+) Với  \(\sqrt {13}  + 5x = 0 \) \( \displaystyle\Leftrightarrow 5x=-\sqrt {13}\)\( \displaystyle\Leftrightarrow x =  - {{\sqrt {13} } \over 5} \approx  - 0,721\)

+) Với   \(3,4 - 4x\sqrt {1,7}  = 0\) \( \displaystyle \Leftrightarrow 3,4 = 4x\sqrt {1,7}  0\)\( \displaystyle \Leftrightarrow x = {{3,4} \over {4\sqrt {1,7} }} \approx 0,652\)

Vậy phương trình có tập nghiệm \( \displaystyle S = \{-0,721 ; 0,652\}.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"