Bài 5.1* phần bài tập bổ sung trang 13 SBT toán 8 tập 2

2024-09-14 09:07:43

Giải các phương trình:

LG a

\(\displaystyle{2 \over {\displaystyle x + {1 \over {1 + \displaystyle {{x + 1} \over {x - 2}}}}}} = {6 \over {3x - 1}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
x + \dfrac{1}{{1 + \dfrac{{x + 1}}{{x - 2}}}} = x + \dfrac{1}{{\dfrac{{x - 2 + x + 1}}{{x - 2}}}}\\
= x + \dfrac{{x - 2}}{{2x - 1}} = \dfrac{{x\left( {2x - 1} \right) + x - 2}}{{2x - 1}}\\
= \dfrac{{2{x^2} - x + x - 2}}{{2x - 1}} = \dfrac{{2{x^2} - 2}}{{2x - 1}}\\
= \dfrac{{2\left( {{x^2} - 1} \right)}}{{2x - 1}}
\end{array}\)

ĐKXĐ của phương trình là \(\displaystyle x \ne 2,x \ne {1 \over 2},x \ne  \pm 1,x \ne {1 \over 3}\).

Phương trình đã cho trở thành: \(\dfrac{2}{{\dfrac{{2\left( {{x^2} - 1} \right)}}{{2x - 1}}}} = \dfrac{6}{{3x - 1}}\)

\(\Leftrightarrow  \displaystyle{{2x - 1} \over {{x^2} - 1}} = {6 \over {3x - 1}}\)

\( \Leftrightarrow \dfrac{{\left( {2x - 1} \right).\left( {3x - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {3x - 1} \right)}} = \dfrac{{6\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 1} \right)\left( {3x - 1} \right)}}\)

\(\displaystyle\eqalign{  & \Rightarrow  \left( {2x - 1} \right)\left( {3x - 1} \right) = 6\left( {{x^2} - 1} \right)  \cr  &  \Leftrightarrow  6{x^2} - 3x - 2x + 1 = 6{x^2} - 6\cr  &  \Leftrightarrow  - 5x  =  - 7  \cr  &  \Leftrightarrow x = {7 \over 5} \cr} \)

Giá trị \(\displaystyle x = {7 \over 5}\) thỏa mãn ĐKXĐ. 

Vậy phương trình có tập nghiệm là \( \displaystyle S = \left\{ {7 \over 5} \right \}.\)


LG b

\(\displaystyle{\displaystyle {{{x + 1} \over {x - 1}} - {{x - 1} \over {x + 1}}} \over {\displaystyle 1 + {{x + 1} \over {x - 1}}}} = {{x - 1} \over {2\left( {x + 1} \right)}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Cách 1. ĐKXĐ: \(\displaystyle x \ne  \pm 1\). 

Ta có vế trái:

\(\begin{array}{l}
\dfrac{{\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}}}}{{1 + \dfrac{{x + 1}}{{x - 1}}}} = \dfrac{{\dfrac{{\left( {x + 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}}}{{\dfrac{{x - 1 + x + 1}}{{x - 1}}}}\\
= \dfrac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}.\dfrac{{x - 1}}{{2x}}\\
= \dfrac{{4x}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}.\dfrac{{x - 1}}{{2x}}\\
= \dfrac{2}{{x + 1}}
\end{array}\)

Từ đó, phương trình đã cho có dạng \(\displaystyle{2 \over {x + 1}} = {{x - 1} \over {2\left( {x + 1} \right)}}\).

\(\begin{array}{l}
\Leftrightarrow \dfrac{{2.2}}{{2\left( {x + 1} \right)}} = \dfrac{{x - 1}}{{2\left( {x + 1} \right)}}\\
\Rightarrow 2.2 = x - 1\\
\Leftrightarrow x - 1 = 4\\
\Leftrightarrow x = 5\,(thỏa\,mãn)
\end{array}\)

Vậy phương trình đã cho có một nghiệm duy nhất \(x = 5\).

Cách 2. Đặt \(\displaystyle{{x + 1} \over {x - 1}} = y\), ta có phương trình \(\displaystyle{{y - \displaystyle {1 \over y}} \over {1 + y}} = {1 \over {2y}}\).

ĐKXĐ của phương trình này là \(\displaystyle y \ne 0\) và \(\displaystyle y \ne  - 1\). 

\(\displaystyle{{y - \displaystyle {1 \over y}} \over {1 + y}} = {1 \over {2y}}\)

\(\begin{array}{l}
\Leftrightarrow \dfrac{{\left( {y - \dfrac{1}{y}} \right).2y}}{{\left( {1 + y} \right).2y}} = \dfrac{{1 + y}}{{\left( {1 + y} \right).2y}}\\
\Rightarrow \left( {y - \dfrac{1}{y}} \right).2y = 1 + y
\end{array}\)

\(\displaystyle\eqalign{  & \Leftrightarrow 2{y^2} - 2 = 1 + y  \cr  &  \Leftrightarrow 2\left( {{y^2} - 1} \right) - \left( {y + 1} \right) = 0\cr  &  \Leftrightarrow 2\left( {{y} - 1} \right) (y+1)- \left( {y + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {y + 1} \right)\left( {2y - 3} \right) = 0 \cr} \)

\(\displaystyle \Leftrightarrow y +1=  0\) hoặc \(\displaystyle 2y-3=0\)

\(\displaystyle \Leftrightarrow y =  -1\) hoặc \(\displaystyle 2y=3\)

\(\displaystyle \Leftrightarrow y =  - 1\) hoặc \(\displaystyle y = {3 \over 2}\)

Trong hai giá trị tìm được, chỉ có \(\displaystyle y = {3 \over 2}\) là thỏa mãn ĐKXĐ.

Thay lại cách đặt ta được:  \(\displaystyle y = {3 \over 2} \Rightarrow \displaystyle{{x + 1} \over {x - 1}} = {3 \over 2}\)

\(\begin{array}{l}
\Rightarrow 2\left( {x + 1} \right) = 3\left( {x - 1} \right)\\
\Leftrightarrow 2x + 2 = 3x - 3\\
\Leftrightarrow 2x - 3x = - 2 - 3\\
\Leftrightarrow - x = - 5\\
\Leftrightarrow x = 5\,(thỏa \, mãn)
\end{array}\)

Vậy phương trình đã cho có tập nghiệm là \( \displaystyle S = \left\{ 5 \right \}.\)


LG c

\(\displaystyle{5 \over x} + {4 \over {x + 1}} = {3 \over {x + 2}} + {2 \over {x + 3}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

ĐKXĐ: \(\displaystyle x \ne \left\{ {0; - 1; - 2; - 3} \right\}\). Ta biến đổi phương trình như sau : 

\(\displaystyle  {5 \over x} + {4 \over {x + 1}} = {3 \over {x + 2}} + {2 \over {x + 3}} \)
\(\displaystyle \Leftrightarrow \left( {{5 \over x} + 1} \right) + \left( {{4 \over {x + 1}} + 1} \right) \) \(\displaystyle = \left( {{3 \over {x + 2}} + 1} \right) + \left( {{2 \over {x + 3}} + 1} \right) \) 
\(\displaystyle  \Leftrightarrow {{5 + x} \over x} + {{5 + x} \over {x + 1}} = {{5 + x} \over {x + 2}} + {{5 + x} \over {x + 3}} \)

\(\displaystyle  \Leftrightarrow {{5 + x} \over x} + {{5 + x} \over {x + 1}} - {{5 + x} \over {x + 2}} - {{5 + x} \over {x + 3}}=0 \)
\(\displaystyle \Leftrightarrow \left( {5 + x} \right) \) \(.\displaystyle \left( {{1 \over x} - {1 \over {x + 3}} + {1 \over {x + 1}} - {1 \over {x + 2}}} \right) = 0 \)
\(\displaystyle  \Leftrightarrow 5 + x = 0\,\,\,\,\,(1) \)

hoặc \(\displaystyle{1 \over x} - {1 \over {x + 3}} + {1 \over {x + 1}} - {1 \over {x + 2}} = 0\)     \((2)\)

Ta có:

\((1)\) \(\displaystyle \Leftrightarrow x =  - 5\)

Phương trình \((2)\) 

\(\begin{array}{l}
\Leftrightarrow \dfrac{1}{x} - \dfrac{1}{{x + 3}} = \dfrac{1}{{x + 2}} - \dfrac{1}{{x + 1}}\\
\Leftrightarrow \dfrac{{x + 3 - x}}{{x\left( {x + 3} \right)}} = \dfrac{{x + 1 - \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\\
\Leftrightarrow \dfrac{3}{{x\left( {x + 3} \right)}} = \dfrac{{ - 1}}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\\
\Rightarrow 3\left( {x + 2} \right)\left( {x + 1} \right) = - x\left( {x + 3} \right)\\
\Leftrightarrow 3\left( {{x^2} + 2x + x + 2} \right) = - {x^2} - 3x\\
\Leftrightarrow 3{x^2} + 6x + 3x + 6 + {x^2} + 3x = 0\\
\Leftrightarrow 4{x^2} + 12x + 6 = 0\\
\Leftrightarrow {\left( {2x} \right)^2} + 2.2x.3 + 9 - 3 = 0\\
\Leftrightarrow {\left( {2x + 3} \right)^2} = 3\\
\Leftrightarrow \left[ \begin{array}{l}
2x + 3 = \sqrt 3 \\
2x + 3 = - \sqrt 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \sqrt 3 - 3\\
2x = - \sqrt 3 - 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{\sqrt 3 - 3}}{2}\\
x = \dfrac{{ - \sqrt 3 - 3}}{2}
\end{array} \right.\left(\, {thỏa\,mãn} \right)
\end{array}\) 

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ { - 5;\dfrac{{ - \sqrt 3  - 3}}{2};\dfrac{{\sqrt 3  - 3}}{2}} \right\}.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"