Bài 37 trang 11 SBT toán 8 tập 2

2024-09-14 09:07:44

Đề bài

Các khẳng định sau đây đúng hay sai: 

a) Phương trình \(\displaystyle{{4x - 8 + \left( {4 - 2x} \right)} \over {{x^2} + 1}} = 0\) có nghiệm là \(x = 2\).

b) Phương trình \(\displaystyle{{\left( {x + 2} \right)\left( {2x - 1} \right) - x - 2} \over {{x^2} - x + 1}} = 0\) có tập nghiệm là \(S = \{ -2; 1 \}\).

c) Phương trình \(\displaystyle{{{x^2} + 2x + 1} \over {x + 1}} = 0\) có nghiệm là \(x = -1\).

d) Phương trình \(\displaystyle{{{x^2}\left( {x - 3} \right)} \over x} = 0\) có tập nghiệm là \(S = \{ 0; 3 \}\).

Phương pháp giải - Xem chi tiết

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết

a) Vì \(\displaystyle{x^2} + 1 > 0\) với mọi \(x\) nên phương trình đã cho tương đương với phương trình :

\(\displaystyle4x - 8 + \left( {4 - 2x} \right) = 0 \)

\(\displaystyle\Leftrightarrow 2x - 4 = 0 \Leftrightarrow 2x = 4 \Leftrightarrow x = 2\).

Vậy khẳng định đã cho là đúng.

b) Vì \(\displaystyle{x^2} - x + 1 =x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)\(\displaystyle = {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} > 0\) với mọi \(x\) nên phương trình đã cho tương đương với phương trình:

\(\displaystyle\left( {x + 2} \right)\left( {2x - 1} \right) - x - 2 = 0 \)

\(\displaystyle \Leftrightarrow \left( {x + 2} \right)\left( {2x - 1} \right) - (x + 2) = 0 \)

\(\displaystyle \Leftrightarrow \left( {x + 2} \right)\left( {2x - 2} \right)=0\)

\(\displaystyle \Leftrightarrow x + 2 = 0\) hoặc \(\displaystyle 2x - 2 = 0\)

\(\displaystyle \Leftrightarrow x =  - 2\) hoặc \(\displaystyle 2x = 2\)

\(\displaystyle \Leftrightarrow x =  - 2\) hoặc \(\displaystyle x = 1\)

Vậy khẳng định đã cho là đúng.

c) Điều kiện xác định của phương trình là \(\displaystyle x + 1 \ne 0\) \(\displaystyle \Leftrightarrow x \ne  - 1\)

Do vậy phương trình \(\displaystyle{{{x^2} + 2x + 1} \over {x + 1}} = 0\) không thể có nghiệm \(\displaystyle x = -1\).

Vậy khẳng định đã cho là sai.

d) Điều kiện xác định của phương trình là \(\displaystyle x \ne 0\).

Do vậy \(x = 0\) không phải là nghiệm của phương trình \(\displaystyle{{{x^2}\left( {x - 3} \right)} \over x} = 0\).

Vậy khẳng định đã cho là sai.

 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"