Bài 62 trang 16 SBT toán 8 tập 2

2024-09-14 09:07:52

Cho hai biểu thức  \(A =\displaystyle{5 \over {2m + 1}}\) và  \(B = \displaystyle{4 \over {2m - 1}}\)

Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức 

LG a

\(2A + 3B = 0;\)

Phương pháp giải:

*) Thay \(A;B\) vào các biểu thức đã cho rồi giải các phương trình chứa ẩn ở mẫu để tìm \(m.\)

*) Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Ta có:  \(\displaystyle A = {5 \over {2m + 1}}\) và \(\displaystyle B =  {4 \over {2m - 1}}\)    ĐKXĐ: \(\displaystyle m \ne  \pm {1 \over 2}\)

Khi đó: 

\(\displaystyle \eqalign{  & 2A + 3B = 0  \cr  &  \Leftrightarrow 2.{5 \over {2m + 1}} + 3.{4 \over {2m - 1}} = 0  \cr  &  \Leftrightarrow {{10} \over {2m + 1}} +{{12} \over {2m - 1}} = 0  \cr} \)

\(\displaystyle  \Leftrightarrow {{10\left( {2m - 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} \) \(\displaystyle+ {{12\left( {2m + 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} = 0  \)

\(\displaystyle \eqalign{  &  \Rightarrow 10\left( {2m - 1} \right) + 12\left( {2m + 1} \right) = 0  \cr  &  \Leftrightarrow 20m - 10 + 24m + 12 = 0  \cr  &  \Leftrightarrow 44m + 2 = 0\cr  &  \Leftrightarrow 44m = -2  \cr} \)

\(\displaystyle \Leftrightarrow m =  - {1 \over {22}}\) (thỏa mãn)

Vậy \(\displaystyle m =  - {1 \over {22}}\) thì \(2A + 3B = 0.\)


LG b

\(AB = A + B.\)

Phương pháp giải:

*) Thay \(A;B\) vào các biểu thức đã cho rồi giải các phương trình chứa ẩn ở mẫu để tìm \(m.\)

*) Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

Ta có:  \(\displaystyle A = {5 \over {2m + 1}}\) và \(\displaystyle B =  {4 \over {2m - 1}}\)    ĐKXĐ: \(\displaystyle m \ne  \pm {1 \over 2}\)

Khi đó:

\(\displaystyle A.B = A + {\rm B}  \)

\(\displaystyle \Leftrightarrow {5 \over {2m + 1}}.{4 \over {2m - 1}} = {5 \over {2m + 1}} \) \(\displaystyle + {4 \over {2m - 1}}  \) 

\(\displaystyle \Leftrightarrow {{20} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}}\) \(\displaystyle= {{5\left( {2m - 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} \) \(\displaystyle + {{4\left( {2m + 1} \right)} \over {\left( {2m + 1} \right)\left( {2m - 1} \right)}} \)

\(\displaystyle\eqalign{  &  \Rightarrow 20 = 5\left( {2m - 1} \right) + 4\left( {2m + 1} \right)  \cr  &  \Leftrightarrow 20 = 10m - 5 + 8m + 4  \cr  &  \Leftrightarrow 18m = 21 \cr} \)

\(\displaystyle \;\;\Leftrightarrow m = {7 \over 6}\) (thỏa mãn)

Vậy \(\displaystyle m = {7 \over 6}\) thì \(A.B = A + B.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"