Bài 2.3 phần bài tập bổ sung trang 54 SBT toán 8 tập 2

2024-09-14 09:07:57

Đề bài

Cho \(a\) là số bất kì, hãy đặt dấu “\(<, \,>, \,≤, \,≥\)” vào ô vuông cho đúng:

Phương pháp giải - Xem chi tiết

- Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương và số âm, liên hệ giữa thứ tự và phép cộng.

- Áp dụng tính chất của giá trị tuyệt đối \(\left| a \right| ≥ 0 \) với mọi \(a.\)

Lời giải chi tiết

a) Với \(a=0\) thì \(\left| a \right| = 0 \).

Với \(a\ne0\) thì \(\left| a \right| > 0 \)

Vậy với mọi \(a\) thì \(\left| a \right| ≥ 0 .\)

b) Ta có : \(\left| a \right| ≥ 0 \)

\(\Rightarrow (-1) .\left| a \right| ≤ (-1).0 \) (Nhân số \(-1\) vào hai vế của bất đẳng thức \(\left| a \right| ≥ 0 \)).

Hay \(-\left| a \right| \le 0 .\)

c)  - Nếu \(a = 0\), ta có \(\left| a \right| = 0\)

Khi đó \(\left| a \right| + 3 = 3>0,\)

- Nếu \(a ≠ 0\), ta có \(\left| a \right| > 0\) , suy ra \(\left| a \right| + 3 > 3\)         \((1)\)

Lại có : \( 3 > 0\)            \((2)\)

Từ \((1)\) và \((2)\), theo tính chất bắc cầu ta có \(\left| a \right| + 3 > 0\)

Vậy : \(\left| a \right| + 3 > 0\) với \(a\) bất kì.

d) Theo câu b) ta có : \(-\left| a \right| \le 0 \)

- Nếu \(a = 0\), ta có \(\left| a \right| = 0\)

Khi đó \(-\left| a \right| - 2 = -2<0.\)

- Nếu \(a ≠ 0\), ta có \(\left| a \right| > 0\) , suy ra \(-\left| a \right| <0\)

\(\Rightarrow -\left| a \right| + (-2 )< 0+(-2 ) \)

\(\Rightarrow -\left| a \right| -2 < -2  \)            \((3)\)

Lại có : \( -2 < 0\)            \((4)\)

Từ \((3)\) và \((4)\), theo tính chất bắc cầu ta có \(-\left| a \right| -2 < 0.\)

Vậy : \(-\left| a \right| -2< 0\) với \(a\) bất kì.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"