Bài 29 trang 53 SBT toán 8 tập 2

2024-09-14 09:07:57

Đề bài

Cho \(a\) và \(b\) là các số dương, chứng tỏ :

\(\displaystyle {a \over b} + {b \over a} \ge 2\)

Phương pháp giải - Xem chi tiết

- Áp dụng hẳng đẳng thức: \((a-b)^2=a^2-2ab+b^2\)

- Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương : Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Lời giải chi tiết

+) Ta có:

\(\eqalign{  & {\left( {a - b} \right)^2} \ge 0 \Rightarrow {a^2} + {b^2} - 2ab \ge 0  \cr  &  \Rightarrow {a^2} + {b^2} - 2ab + 2ab \ge 2ab \cr} \)

  \( \Rightarrow {a^2} + {b^2} \ge 2ab\)    \((*)\)

+) Với \(\displaystyle a > 0,b > 0 \Rightarrow a.b > 0 \Rightarrow {1 \over {ab}} > 0\)

Nhân hai vế của \((*)\) với \(\displaystyle{1 \over {ab}}\) ta có :

\(\eqalign{  & \left( {{a^2} + {b^2}} \right).{1 \over {ab}} \ge 2ab.{1 \over {ab}}  \cr  &  \Leftrightarrow {{{a^2}} \over {ab}} + {{{b^2}} \over {ab}} \ge 2  \cr  &  \Leftrightarrow {a \over b} + {b \over a} \ge 2 \,\cr} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"