Bài 64 trang 58 SBT toán 8 tập 2

2024-09-14 09:08:08

Tìm các số tự nhiện \(n\) thỏa mãn mỗi bất phương trình sau:

LG a

\(3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0\)

Phương pháp giải:

- Áp dụng qui tắc chuyển vế và quy tắc nhân để giải các bất phương trình đã cho.

- Dựa vào nghiệm vừa tìm được để tìm các số tự nhiên thỏa mãn bất phương trình đã cho.

Lời giải chi tiết:

Ta có :

\(\eqalign{  & 3\left( {5 - 4n} \right) + \left( {27 + 2n} \right) > 0  \cr  &  \Leftrightarrow 15 - 12n + 27 + 2n > 0  \cr &  \Leftrightarrow  - 10n + 42>0 \cr &  \Leftrightarrow  - 10n >  - 42 \cr  &  \Leftrightarrow -10n.\left( \dfrac{-1}{10} \right) < 4,2.\left( \dfrac{-1}{10} \right) \cr  &  \Leftrightarrow n < 4,2 \cr} \) 

Vậy các số tự nhiên thỏa mãn bất phương trình là \(0; 1; 2; 3; 4.\)


LG b

\({\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40\)

Phương pháp giải:

- Áp dụng qui tắc chuyển vế và quy tắc nhân để giải các bất phương trình đã cho.

- Dựa vào nghiệm vừa tìm được để tìm các số tự nhiên thỏa mãn bất phương trình đã cho.

Lời giải chi tiết:

Ta có :

\(\eqalign{  & {\left( {n + 2} \right)^2} - \left( {n - 3} \right)\left( {n + 3} \right) \le 40  \cr  &  \Leftrightarrow {n^2} + 4n + 4 - {n^2} + 9 \le 40  \cr  &  \Leftrightarrow 4n \le 40 - 4-9  \cr  &  \Leftrightarrow 4n \le 27\cr  &  \Leftrightarrow n \le {{27} \over 4} \cr} \)

Vậy các số tự nhiên thỏa mãn bất phương trình là \(0; 1; 2; 3; 4; 5; 6.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"