Bài 56 trang 58 SBT toán 8 tập 2

2024-09-14 09:08:10

Cho bất phương trình ẩn \(x\) : \(2x + 1 > 2\left( {x + 1} \right)\)

LG a

Chứng tỏ các giá trị \( - 5;0; - 8\) đều không phải là nghiệm của nó.

Phương pháp giải:

Áp dụng định nghĩa: Nghiệm của bất phương trình là giá trị của ẩn thay vào bất phương trình ta được một khẳng định đúng.

Lời giải chi tiết:

+) Thay \(x = -5\) vào bất phương trình ta được: \(2.\left( { - 5} \right) + 1 >2.\left[ {\left( { - 5} \right) + 1} \right] \)  \( \Rightarrow (-9) > (-8)\) (khẳng định sai)

Do đó \(x = -5\) không là nghiệm của bất phương trình \(2x + 1 > 2\left( {x + 1} \right).\)

+) Thay \(x = 0\) vào bất phương trình ta được: \(2.0 + 1 >2.(0+1) \)  \( \Rightarrow 1 > 2\) (khẳng định sai)

Do đó \(x = 0\) không là nghiệm của bất phương trình \(2x + 1 > 2\left( {x + 1} \right).\)

+) Thay \(x = -8\) vào bất phương trình ta được: \(2.\left( { - 8} \right) + 1 >2.\left[ {\left( { - 8} \right) + 1} \right] \)  \( \Rightarrow (-15) > (-14)\) (khẳng định sai)

Do đó \(x = -8\) không là nghiệm của bất phương trình \(2x + 1 > 2\left( {x + 1} \right).\)


LG b

Bất phương trình này có thể nhận giá trị nào của \(x\) là nghiệm ?

Phương pháp giải:

Áp dụng quy tắc chuyển vế để giải bất phương trình đã cho.

Lời giải chi tiết:

Ta có:

\(\eqalign{  & 2x + 1 > 2\left( {x + 1} \right)  \cr  &  \Leftrightarrow 2x + 1 > 2x + 2  \cr}\)

\(\Leftrightarrow 2x-2x > 2-1 \) 

\(\Leftrightarrow 0x > 1 \) (Vô lí)

Vậy bất phương trình vô nghiệm.

Hay không có giá trị nào của \(x\) thỏa mãn bất phương trình.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"