Bài 65 trang 59 SBT toán 8 tập 2

2024-09-14 09:08:18

Giải các phương trình :

LG a

\(\left| {0,5x} \right| = 3 - 2x\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

Ta có :

\(\left| {0,5x} \right| = 0,5x\) khi \(0,5x \ge 0 \) hay \( x \ge 0;\)

\(\left| {0,5x} \right| =  - 0,5x\) khi \(0,5x < 0 \) hay \( x < 0.\)

+) Với  \(x \ge 0\) ta có phương trình:

\(0,5x = 3 - 2x \)

\(\Leftrightarrow 0,5x + 2x = 3\)

\(\Leftrightarrow 2,5x = 3\)

\(\Leftrightarrow x = 1,2\)

Giá trị \(x = 1,2\) thỏa mãn điều kiện \(x ≥ 0\) nên \(1,2\) là nghiệm của phương trình.

+) Với  \(x< 0\) ta có phương trình:

\( - 0,5x = 3 - 2x\)

\(\Leftrightarrow  - 0,5x + 2x = 3\)

\(\Leftrightarrow 1,5x = 3 \Leftrightarrow x = 2\)

Giá trị \(x = 2\) không thỏa mãn điều kiện \(x < 0\) nên loại.

 Vậy tập nghiệm của phương trình là: \(S = \{1,2\}.\)


LG b

\(\left| { - 2x} \right| = 3x + 4\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

Ta có:

\(\left| { - 2x} \right| =  - 2x\) khi \( - 2x \ge 0 \) hay \( x \le 0;\)

\(\left| { - 2x} \right| = 2x\) khi \( - 2x < 0 \) hay \( x > 0.\)

+) Với \(x \le 0\) ta có phương trình:

\( - 2x = 3x + 4 \Leftrightarrow  - 2x - 3x = 4 \)

\(\Leftrightarrow  - 5x = 4 \Leftrightarrow x =  - 0,8\)

Giá trị \(x = -0,8\) thỏa mãn điều kiện \(x ≤ 0\) nên \(– 0,8\) là nghiệm của phương trình.

+) Với \(x >0\) ta có phương trình:

\(2x = 3x + 4 \Leftrightarrow 2x - 3x = 4\)

\(\Leftrightarrow  - x = 4 \Leftrightarrow x =  - 4\)

Giá trị \(x = -4\) không thỏa mãn điều kiện \(x > 0\) nên loại.

 Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 0,8} \right\}.\)


LG c

\(\left| {5x} \right| = x - 12\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

Ta có :

\(\left| {5x} \right| = 5x\) khi \(5x \ge 0 \) hay \( x \ge 0;\)

\(\left| {5x} \right| =  - 5x\) khi \(5x < 0 \) hay \( x < 0.\)

+) Với  \(x \ge 0\) ta có phương trình:

\(5x = x - 12 \Leftrightarrow 5x - x =  - 12\)

\(\Leftrightarrow 4x =  - 12 \Leftrightarrow x =  - 3\)

Giá trị \(x = -3\) không thỏa mãn điều kiện \(x ≥ 0\) nên loại.

+) Với  \(x<0\) ta có phương trình:

\( - 5x = x - 12 \Leftrightarrow  - 5x - x =  - 12 \)

\(\Leftrightarrow  - 6x =  - 12 \Leftrightarrow x = 2\)

Giá trị \(x = 2\) không thỏa mãn điều kiện \(x < 0\) nên loại.

Vậy phương trình vô nghiệm.


LG d

\(\left| { - 2,5x} \right| = 5 + 1,5x\)

Phương pháp giải:

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

Lời giải chi tiết:

Ta có :

\(\left| { - 2,5x} \right| =  - 2,5x\) khi \( - 2,5x \ge 0 \) hay \( x \le 0.\)

\(\left| { - 2,5x} \right| = 2,5x\) khi \( - 2,5x < 0 \) hay \( x > 0.\)

+) Với \(x \le 0\) ta có phương trình: 

\( - 2,5x = 5 + 1,5x \)

\(\Leftrightarrow  - 2,5x - 1,5x = 5\)

\( \Leftrightarrow  - 4x = 5 \Leftrightarrow x =  - 1,25\)

Giá trị \(x = -1,25\) thỏa mãn điều kiện \(x ≤ 0\) nên \(– 1,25\) là nghiệm của phương trình.

+) Với \(x > 0\) ta có phương trình: 

\(2,5x = 5 + 1,5x \Leftrightarrow 2,5x - 1,5x = 5\)\(\, \Leftrightarrow x = 5\)

Giá trị \(x = 5\) thỏa mãn điều kiện \(x > 0\) nên \(5\) là nghiệm của phương trình.

 Vậy tập nghiệm của phương trình là: \(S= \{-1,25; 5\}.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"