Bài 78 trang 61 SBT toán 8 tập 2

2024-09-14 09:08:21

Đề bài

Chứng tỏ rằng, trong một tam giác thì độ dài một cạnh luôn nhỏ hơn nửa chu vi.

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức tam giác : Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

Gọi \(a\,,\; b\,, \;c \) lần lượt là độ dài ba cạnh của tam giác.

Chu vi tam giác là \(a + b + c.\)

Nên nửa chu vi tam giác là: \(\dfrac{a+b+c}{2}\)

Theo bất đẳng thức tam giác, ta có :

\(a < b + c \)

\(\Leftrightarrow a + a < a + b + c\)

\(\Leftrightarrow 2a < a + b + c \)

\(\displaystyle \Leftrightarrow a < {{a + b + c} \over 2}\)

Tương tự:

 \(\eqalign{  & b < a + c \cr&\Leftrightarrow b + b < a + b + c \cr&\Leftrightarrow 2b < a + b + c \cr&\Leftrightarrow b < {{a + b + c} \over 2}  \cr  & c < a + b \cr& \Leftrightarrow c + c < a + b + c \cr&\Leftrightarrow 2c < a + b + c \cr&\Leftrightarrow c < {{a + b + c} \over 2} \cr} \)

Vậy trong một tam giác độ dài một cạnh luôn nhỏ hơn nửa chu vi.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"