Bài 50 trang 96 SBT toán 8 tập 2

2024-09-14 09:09:01

Đề bài

Tam giác vuông \(ABC\) (\(\widehat A = 90^\circ \)) có đường cao \(AH\) và trung tuyến \(AM\) (h.36). Tính diện tích tam giác \(AMH\), biết rằng \(BH = 4cm, CH = 9cm.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

Lời giải chi tiết

Xét hai tam giác vuông \(HBA\) và \(HAC\) có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {HBA} = \widehat {HAC}\) (vì hai góc cùng phụ với \(\widehat C\))

\( \Rightarrow  ∆ HBA \backsim ∆ HAC\) (g.g)

\( \Rightarrow \displaystyle {{HA} \over {HB}} = {{HC} \over {HA}}\)

\( \Rightarrow H{A^2} = HB.HC = 4.9 = 36\)

\( \Rightarrow AH = 6\;(cm)\).

Vì \(AM\) là trung tuyến nên \(M\) là trung điểm của \(BC\) do đó \(\displaystyle BM = {1 \over 2}BC = {1 \over 2}.\left( {9 + 4} \right) \)\(\,=6,5\;  (cm)\)

Mà \(HM = BM - BH = 6,5 - 4 \)\(\,= 2,5\;  (cm)\).

Vậy \(\displaystyle {S_{AHM}} = {1 \over 2}AH.HM = {1 \over 2}.6.2,5 \)\(\,= 7,5\,(c{m^2})\).

[hoctot.me - Trợ lý học tập AI]

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"