Bài 4.3 phần bài tập bổ sung trang 158 SBT toán 8 tập 2

2024-09-14 09:10:05

Thể tích của một hình chóp tam giác đều thay đổi thế nào nếu ta tăng

LG a

Gấp đôi chiều cao của hình chóp;

Phương pháp giải:

Sử dụng:

- Diện tích tam giác đều cạnh \(a\) là \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

- Thể tích của hình chóp đều bằng một phần ba diện tích mặt đáy nhân với chiều cao.

\(V = \dfrac{1}{3} .S.h\)

Trong đó \(S\) là diện tích đáy, \(h\) là chiều cao.

Lời giải chi tiết:

Tam giác đều cạnh a có diện tích bằng \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

Do đó, hình chóp tam giác đều với cạnh đáy \(a\), chiều cao \(h\) có thể tích là:

\(\displaystyle V = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h = {{{a^2}h\sqrt 3 } \over {12}}\)

Nếu tăng gấp đôi chiều cao thì thể tích hình chóp là:

\(\displaystyle V' = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.2h = 2.{{{a^2}h\sqrt 3 } \over {12}} = 2V\)


LG b

Gấp đôi cạnh đáy của hình chóp;

Phương pháp giải:

Sử dụng:

- Diện tích tam giác đều cạnh \(a\) là \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

- Thể tích của hình chóp đều bằng một phần ba diện tích mặt đáy nhân với chiều cao.

\(V = \dfrac{1}{3} .S.h\)

Trong đó \(S\) là diện tích đáy, \(h\) là chiều cao.

Lời giải chi tiết:

Tam giác đều cạnh a có diện tích bằng \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

Do đó, hình chóp tam giác đều với cạnh đáy \(a\), chiều cao \(h\) có thể tích là:

\(\displaystyle V = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h = {{{a^2}h\sqrt 3 } \over {12}}\)

Nếu tăng gấp đôi cạnh đáy thì thể tích hình chóp là:

\(\displaystyle V' = {1 \over 3}.{{{{\left( {2a} \right)}^2}\sqrt 3 } \over 4}.h = 4.{{{a^2}h\sqrt 3 } \over {12}} \)\(\,= 4V\)


LG c

Gấp đôi cả chiều cao và cạnh đáy của hình chóp.

Phương pháp giải:

Sử dụng:

- Diện tích tam giác đều cạnh \(a\) là \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

- Thể tích của hình chóp đều bằng một phần ba diện tích mặt đáy nhân với chiều cao.

\(V = \dfrac{1}{3} .S.h\)

Trong đó \(S\) là diện tích đáy, \(h\) là chiều cao.

Lời giải chi tiết:

Tam giác đều cạnh a có diện tích bằng \(\displaystyle{{{a^2}\sqrt 3 } \over 4}\).

Do đó, hình chóp tam giác đều với cạnh đáy \(a\), chiều cao \(h\) có thể tích là:

\(\displaystyle V = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h = {{{a^2}h\sqrt 3 } \over {12}}\)

Nếu gấp đôi cả chiều cao và cạnh đáy thì thể tích hình chóp là:

\(\displaystyle V' = {1 \over 3}.{{{{\left( {2a} \right)}^2}\sqrt 3 } \over 4}.2h = 8.{{{a^2}h\sqrt 3 } \over {12}} \)\(\,= 8V\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"