Bài 12 trang 183 SBT toán 8 tập 2

2024-09-14 09:10:23

Đề bài

Tìm các giá trị nguyên của \(x\) nghiệm đúng cả hai bất phương trình sau:

\(\begin{array}{l}
\dfrac{{x + 4}}{5} - x + 4 > \dfrac{x}{3} - \dfrac{{x - 2}}{2}\,\,\,\,\,\,(\,1\,)\\
x - \dfrac{{x - 3}}{8} \ge 3 - \dfrac{{x - 3}}{{12}}\,\,\,\,\,\,\,(2)
\end{array}\)

Phương pháp giải - Xem chi tiết

Tìm nghiệm của bất phương trình (1) và bất phương trình (2). Sau đó tìm nghiệm chung của hai bất phương trình kết hợp điều kiện \(x\in\mathbb Z\) để tìm các giá trị \(x\) thỏa mãn.

Lời giải chi tiết

\(\dfrac{{x + 4}}{5} - x + 4 > \dfrac{x}{3} - \dfrac{{x - 2}}{2}\,\,\,\,\,\,(\,1\,)\)

\(\Leftrightarrow \dfrac{{6\left( {x + 4} \right) + 30\left( { - x + 4} \right)}}{{30}} >\)\(\, \dfrac{{10x - 15\left( {x - 2} \right)}}{{30}}\)

\(\Leftrightarrow 6\left( {x + 4} \right) + 30\left( { - x + 4} \right) > \)\(\,10x - 15\left( {x - 2} \right)\)

\(\Leftrightarrow 6x + 24 - 30x + 120 > \)\(\,10x - 15x + 30\)

\(\Leftrightarrow - 24x + 144 > - 5x + 30\)

\(\Leftrightarrow - 24x + 5x > 30 - 144\)

\(\Leftrightarrow - 19x > - 114\)

\(\Leftrightarrow x < \left( { - 114} \right):\left( { - 19} \right)\)

\(\Leftrightarrow x < 6\)

Vậy nghiệm của bất phương trình (1) là \(x < 6\).

\(x - \dfrac{{x - 3}}{8} \ge 3 - \dfrac{{x - 3}}{{12}}\,\,\,\,\,\,\,(2)\)

\(\Leftrightarrow \dfrac{{24x - 3\left( {x - 3} \right)}}{{24}} \ge \)\(\,\dfrac{{3.24 - 2\left( {x - 3} \right)}}{{24}}\)

\(\Leftrightarrow 24x - 3\left( {x - 3} \right) \ge 3.24 - 2\left( {x - 3} \right)\)

\(\Leftrightarrow 24x - 3x + 9 \ge 72 - 2x + 6\)

\(\Leftrightarrow 21x + 9 \ge - 2x + 78\)

\(\Leftrightarrow 21x + 2x \ge 78 - 9\)

\(\Leftrightarrow 23x \ge 69\)

\(\Leftrightarrow x \ge 3\)

Vậy nghiệm của bất phương trình (2) là \(x \ge 3\).

Nghiệm chung của hai bất phương trình là \(3 ≤ x < 6\).

Vì \(x ∈\mathbb Z\) nên \(n ∈ \{3; 4; 5\}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"