Bài 5 trang 184 SBT toán 8 tập 2

2024-09-14 09:10:30

Đề bài

Tứ giác \(ABCD\) có \(AB = 3cm, BC = 10cm,\) \(CD = 12cm, AD = 5cm,\) đường chéo \(BD = 6cm.\) Chứng minh rằng \(ABCD\) là hình thang.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Tam giác này có ba cạnh tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

- Dấu hiệu nhận biết hai đường thẳng song song: Nếu \(c\) cắt hai đường thẳng \(a\) và \(b\) trong các góc tạo thành có cặp góc so le trong bằng nhau thì \(a//b\).

- Tứ giác có hai cạnh đối song song là hình thang.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
\dfrac{{AB}}{{BD}} = \dfrac{3}{6} = \dfrac{1}{2}\\
\dfrac{{AD}}{{BC}} = \dfrac{5}{{10}} = \dfrac{1}{2}\\
\dfrac{{BD}}{{DC}} = \dfrac{6}{{12}} = \dfrac{1}{2}\\
\Rightarrow \dfrac{{AB}}{{BD}} = \dfrac{{AD}}{{BC}} = \dfrac{{BD}}{{DC}} = \dfrac{1}{2}
\end{array}\)

Xét \(ΔABD \) và \( ΔBDC\) có:

\(\dfrac{{AB}}{{BD}} = \dfrac{{AD}}{{BC}} = \dfrac{{BD}}{{DC}}= \dfrac{1}{2}\) (cmt)

\( ⇒ ΔABD \backsim ΔBDC\) (c.c.c)

\( ⇒ \widehat {ABD} = \widehat {BDC}\)

Mà \( \widehat {ABD} \) và \(\widehat {BDC}\) ở vị trí so le trong nên \(AB // CD\).

Tứ giác \(ABCD\) có \(AB//CD\) (cmt) nên là hình thang.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"