Giải bài 3.13 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức

2024-09-14 10:15:41

Cho tam giác ABC. Khẳng định nào sau đây là đúng?

LG a

A. \(S = \frac{{abc}}{{4r}}\)

B. \(r = \frac{{2S}}{{a + b + c}}\)

C. \({a^2} = {b^2} + {c^2} + 2bc\;\cos A\)

D. \(S = r\,(a + b + c)\)

Phương pháp giải:

+) Định lí cos: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)

+) Công thức tính diện tích: \(S = pr = \frac{{abc}}{{4R}}\)

Lời giải chi tiết:

a) Chọn đáp án B

A. \(S = \frac{{abc}}{{4r}}\)

Ta có: \(S = \frac{{abc}}{{4R}}\). Mà \(r < R\)nên suy ra \(S = \frac{{abc}}{{4R}} < \frac{{abc}}{{4r}}\)

Vậy A sai.

B. \(r = \frac{{2S}}{{a + b + c}}\)

Ta có: \(S = pr \Rightarrow r = \frac{S}{p}\)

Mà\(p = \frac{{a + b + c}}{2}\;\; \Rightarrow r = \frac{S}{p}\; = \frac{S}{{\frac{{a + b + c}}{2}}} = \frac{{2S}}{{a + b + c}}\;\)

Vậy B đúng

C. \({a^2} = {b^2} + {c^2} + 2bc\;\cos A\)

Sai vì theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)

D. \(S = r\,(a + b + c)\)

Sai vì \(S = pr = r.\frac{{a + b + c}}{2}\)

b) Chọn đáp án A

A. \(\sin A = \sin \,(B + C)\)

Ta có: \(\widehat A + \widehat B + \widehat C = {180^o}\)

\(\begin{array}{l} \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A\\ \Rightarrow \sin \,(B + C) = \sin A\end{array}\)

Vậy A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)(Do \(\widehat A + \widehat B + \widehat C = {180^o}\))

C. \(\;\cos A > 0\)

Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\)

Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

Vậy D sai.


LG b

A. \(\sin A = \sin \,(B + C)\)

B. \(\cos A = \cos \,(B + C)\)

C. \(\;\cos A > 0\)

D. \(\sin A\,\, \le 0\)

Phương pháp giải:

Giá trị lượng giác của hai góc bù nhau:

\(\sin x = \sin \left( {{{180}^o} - x} \right)\); \( - \cos x = \cos \left( {{{180}^o} - x} \right)\)

Lời giải chi tiết:

A. \(\sin A = \sin \,(B + C)\)

Ta có: \((\widehat A  + \widehat C) + \widehat B= {180^o}\)

\(\Rightarrow \sin \,(B + C) = \sin A\)

=> A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)

C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

=> D sai.

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"