Giải bài 4.7 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức

2024-09-14 10:15:57

Đề bài

Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD} \). Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \).

Phương pháp giải - Xem chi tiết

Bước 1: Xác định vectơ \(\overrightarrow {AB}  + \overrightarrow {AD} \) dựa vào quy tắc hình bình hành, từ đó xác định điểm M.

Bước 2: Nhận xét về phương và chiều của hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \) hoặc tìm biểu thức liên hệ giữa hai vectơ đó.

Lời giải chi tiết

Ta có: \( \overrightarrow {AB}  + \overrightarrow {AD}  =  \overrightarrow {AC} \) (do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

\( \Rightarrow \) Tứ giác ABMC là hình bình hành.

\( \Rightarrow  \overrightarrow {DC} =\overrightarrow {AB}  = \overrightarrow {CM} \). 

\( \Rightarrow C\) là trung điểm DM.

Vậy M thuộc DC sao cho C là trung điểm DM.

Chú ý khi giải

+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

+) ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"