Giải bài 4.37 trang 72 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:16:32

Đề bài

Cho vectơ \(\overrightarrow a  \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Lời giải chi tiết

Cho vectơ \(\overrightarrow a  \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Lời giải chi tiết

Cách 1:

Gọi tọa độ của vectơ \(\overrightarrow a \) là (x; y).

Ta có: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \).

Đặt \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a \)

\( \Rightarrow \overrightarrow i  = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.(x;y) = \left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }};\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)\)

\( \Rightarrow |\overrightarrow i |\, = \sqrt {{{\left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2} + {{\left( {\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2}}  = \sqrt {\frac{{{x^2}}}{{{x^2} + {y^2}}} + \frac{{{y^2}}}{{{x^2} + {y^2}}}}  = 1\)

Mặt khác:

 \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.\overrightarrow a \) và \(\frac{1}{{\sqrt {{x^2} + {y^2}} }} > 0\) với mọi \(x,y \ne 0\)

Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng.

Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Cách 2:

Với mọi vectơ \(\overrightarrow a  \ne \overrightarrow 0 \), ta có:  \(|\overrightarrow a |\; > 0 \Rightarrow k = \frac{1}{{|\overrightarrow a |}} > 0\). Đặt \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = k.\overrightarrow a \)

\(\begin{array}{l} \Rightarrow |\overrightarrow i |\, = \;|k.\overrightarrow a |\; = \;|k|.|\overrightarrow a |\;\\ \Leftrightarrow \left| {\overrightarrow {\,i} \,} \right| = k.|\overrightarrow a |\; = \frac{1}{{|\overrightarrow a |}}.|\overrightarrow a | = 1\end{array}\)

Mặt khác: \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = k.\overrightarrow a \) và \(k > 0\)

Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng.

Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"