HĐ4
Điểm (thang điểm 100) của 12 thí sinh cao điểm nhất trong một cuộc thi như sau:
58 74 92 81 97 88 75 69 87 69 75 77.
Ban tổ chức muốn trao các giải Nhất, Nhì, Ba, Tư cho các thí sinh này, mỗi giải trao cho 25% số thí sinh (3 thí sinh).
Em hãy giúp ban tổ chức xác định các ngưỡng điểm để phân loại thí sinh.
Phương pháp giải:
Sắp xếp điểm theo thứ tự không giảm.
Lời giải chi tiết:
Sắp xếp điểm theo thứ tự không giảm.
97 92 88 87 81 77 75 75 74 69 69 58
Vì mỗi giải trao cho 3 người nên ta
+ Giải Nhất: những người được 97, 92, 88 (lớn hơn 87)
+ Giải Nhì: những người được 87, 81, 77 ( lớn hơn 75, nhỏ hơn hoặc bằng 87)
+ Giải Ba: những người được 75, 74 (lớn hơn 69, nhỏ hơn hoặc bằng 75)
+ Giải Tư: những người được 69, 58. (nhỏ hơn hoặc bằng 69)
Chú ý
Có thể xếp giải từ giải Tư đến giải Nhất.
Luyện tập 3
Bảng sau đây cho biết số lần học tiếng Anh trên internet trong một tuần của một số học sinh lớp 10:
Số lần | 0 | 1 | 2 | 3 | 4 | 5 |
Số học sinh | 2 | 4 | 6 | 12 | 8 | 3 |
Hãy tìm các tứ phân vị cho mẫu số liệu này.
Phương pháp giải:
Để tìm các tứ phân vị của mẫu số liệu có n giá trị cho dưới dạng bảng tần số, ta làm như sau:
+ Tìm trung vị. Giá trị này là \({Q_2}\)
+ Tìm trung vị của nửa số liệu bên trái \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_1}\)
+ Tìm trung vị của nửa số liệu bên phải \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_3}\)
Lời giải chi tiết:
Ta có n=2+4+6+12+8+3=35, lẻ.
Trung vị là học sinh thứ 18
Ta thấy 2+4+6<18<2+4+6+12
=> \({Q_2} = 3\)
Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\)(không bao gồm \({Q_2}\))
Nửa số liệu bên trái \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9:
Ta thấy 2+4<9<2+4+6
=>\({Q_1} = 2\)
Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\)(không bao gồm \({Q_2}\))
Nửa số liệu bên phải \({Q_2}\) có 17 học sinh nên trung vị là học sinh thứ 9 trong 17 học sinh và là học sinh thứ 9+18=27 trong 35 học sinh.
Ta thấy 2+4+6+12<27<2+4+6+12+8
=>\({Q_3} = 4\)