Giải mục 2 trang 86, 87 SGK Toán 10 tập 1 - Kết nối tri thức

2024-09-14 10:16:52

Đề bài

Luyện tập 3 trang 87 SGK Toán 10 

Dùng đồng hồ đo thời gian có độ chia nhỏ nhất đến 0,001 giây để đo 7 lần thời gian rơi tự do của một vật bắt đầu từ điểm A \(\left( {{v_A} = 0} \right)\) đến điểm B. Kết quả đo như sau:

0,398   0,399   0,408   0,410   0,406   0,405   0,402.

(Theo Bài tập Vật lý 10, Nhà xuất bản Giáo dục Việt Nam, 2018)

Hãy tính phương sai và độ lệch chuẩn cho mẫu số liệu này. Qua các đại lượng này, em có nhận xét gì về độ chính xác của phép đo trên?

Phương pháp giải - Xem chi tiết

Giá trị trung bình: \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

Phương sai:

\({s^2} = \frac{{{{\left( {{x_1} - \overline x} \right)}^2} + {{\left( {{x_2} - \overline x} \right)}^2} + ... + {{\left( {{x_n} - \overline x} \right)}^2}}}{n}\)

Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)

Phương sai và độ lệch chuẩn càng lớn thì độ chính xác càng thấp.

Lời giải chi tiết

Ta có giá trị trung bình:

\(\overline x = \frac{0,398 + 0,399 + 0,408 + 0,410 + 0,406 + 0,405 + 0,402}{7}\)

\( = 0,404\)

Ta có bảng sau:

Giá trị

Độ lệch

Bình phương độ lệch

0,398

0,006

\(3,{6.10^{ - 5}}\)

0,399

0,005

\(2,{5.10^{ - 5}}\)

0,408

0,004

\(1,{6.10^{ - 5}}\)

0,410

0,006

\(3,{6.10^{ - 5}}\)

0,406

0,002

\(0,{4.10^{ - 5}}\)

0,405

0,001

\(0,{1.10^{ - 5}}\)

0,402

0,002

\(0,{4.10^{ - 5}}\)

Tổng

\(12,{2.10^{ - 5}}\)

Phương sai:

\({s^2} = \frac{{12,{{2.10}^{ - 5}}}}{7} \approx 0,000017\)

Độ lệch chuẩn: \(s = \sqrt {{s^2}}  \approx 4,{17.10^{ - 3}}\)

Phép đo có độ chính xác cao.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"