Giải bài 6.21 trang 27 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:32

Đề bài

Giải các phương trình sau:

a) \(\sqrt {6{x^2} + 13x + 13}  = 2x + 4\) 

b) \(\sqrt {2{x^2} + 5x + 3}  =  - 3 - x\)

c) \(\sqrt {3{x^2} - 17x + 23}  = x - 3\) 

d) \(\sqrt { - {x^2} + 2x + 4}  = x - 2\)

Phương pháp giải - Xem chi tiết

Bước 1: Bình phương hai vế và giải phương trình nhận được

Bước 2: Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không và kết luân nghiệm

Lời giải chi tiết

a) \(\sqrt {6{x^2} + 13x + 13}  = 2x + 4\)    

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)

\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)

b) \(\sqrt {2{x^2} + 5x + 3}  =  - 3 - x\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm

c) \(\sqrt {3{x^2} - 17x + 23}  = x - 3\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)                  

d) \(\sqrt { - {x^2} + 2x + 4}  = x - 2\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)

\( \Leftrightarrow x = 0\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn

Vậy nghiệm của phương trình là x=3

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"