Giải bài 6.28 trang 28 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:37

Đề bài

Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3}  = x - 1\) là:

A. \(\left\{ { - 1 - \sqrt 5 ; - 1 + \sqrt 5 } \right\}.\)

B. \(\left\{ { - 1 - \sqrt 5 } \right\}.\)

C. \(\left\{ { - 1 + \sqrt 5 } \right\}.\)

D. \(\emptyset .\)

Phương pháp giải - Xem chi tiết

-  Tìm điều kiện để phương trình có nghĩa

-  Bình phương hai vế của phương trình để mất dấu căn

-  Đưa về dạng phương trình và giải: \(a{x^2} + bx + c = 0.\)

Lời giải chi tiết

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)

\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)

Giải phương trình: \(\sqrt {2{x^2} - 3}  = x - 1\)

\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x =  - 1 + \sqrt 5 }\\{x =  - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)

Ta thấy \(x =  - 1 + \sqrt 5 \) thỏa mãn.

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)

Chọn C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"