Giải bài 7.11 trang 41 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:40

Đề bài

Chứng minh rằng hai đường thẳng d: y = ax + b (\(a{\rm{ }} \ne {\rm{ }}0\) ) và d': y=a'x + b' (\(a'{\rm{ }} \ne {\rm{ }}0\))  vuông góc với nhau khi và chỉ khi aa' = -1.

Phương pháp giải - Xem chi tiết

Chuyển mỗi phương trình của \(d,d'\) về dạng tổng quát từ đó tìm được hai vecto pháp tuyến tương ứng của mỗi đường thẳng, sau đó sử dụng điều kiện \(\overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}}  = 0\).

Lời giải chi tiết

Phương trình tổng quát của đường thẳng \(d,d'\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a'x - y + b' = 0\).

Do đó \(\overrightarrow {{n_d}}  = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d'}}}  = \left( {a'; - 1} \right)\).

Ta có \(d \bot d' \Leftrightarrow \overrightarrow {{n_d}}  \bot \overrightarrow {{n_{d'}}}  \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}}  = 0 \Leftrightarrow a.a' + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a' =  - 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"