Giải bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:41

Đề bài

Trong mặt phẳng toạ độ Oxy, cho điểm A(0; -2) và đường thẳng \(\Delta \): x + y - 4 = 0.

a) Tính khoảng cách từ điểm A đến đường thẳng \(\Delta \).

b) Viết phương trình đường thẳng a đi qua điểm M(-1; 0) và song song với \(\Delta \).

c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với \(\Delta \)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức khoảng cách từ một điểm đến một đường thẳng

b) Đường thẳng a đi qua M và có vecto pháp tuyến là \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }} \)

c) Đường thẳng b đi qua N và có vecto chỉ phương là \(\overrightarrow {{u_b}}  = \overrightarrow {{n_\Delta }} \)

Lời giải chi tiết

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).

b) Ta có: \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\). Phương trình đường thẳng a là:

\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)

c) Ta có: \(\overrightarrow {{u_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}}  = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:

\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"