Giải mục 3 trang 52, 53 SGK Toán 10 tập 2 - Kết nối tri thức

2024-09-14 10:17:47

HĐ5

Cho parabol (P): \(y = \frac{1}{4}{x^2}\). Xét F(0; 1) và đường thẳng\(\Delta :{\rm{ }}y{\rm{ }} + 1 = 0\) . Với điểm M(x;y) bất kì, chứng minh rằng \(MF{\rm{ }} = \;d\left( {M,\Delta } \right) \Leftrightarrow \) M(xy) thuộc (P).

Lời giải chi tiết:

Ta có: \(MF = \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} ,d\left( {M,\Delta } \right) = \left| {y + 1} \right|\).

Xét \(MF = d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \left| {y + 1} \right| \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {\left( {y + 1} \right)^2} \Leftrightarrow {x^2} = 4y \Leftrightarrow y = \frac{1}{4}{x^2}\).

Vậy tập hợp điểm M để \(MF{\rm{ }} = \;d\left( {M,\Delta } \right)\) là parabol \(y = \frac{1}{4}{x^2}\)


HĐ6

Xét (P) là một parabol với tiêu điểm F và đường chuẩn \(\Delta \). Gọi p là tham số tiêu của (P) và H là hình chiếu vuông góc của F trên \(\Delta \). Chọn hệ trục toạ độ Oxy Có gốc O là trung điểm của HF, tia Ox trùng tia OF (H7.27).

a) Nêu toạ độ của Fvà phương trình của \(\Delta \).

b) Giải thích vì sao điềm M(x; y) thuộc (P) khi và chỉ khi \(\sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}}  = \left| {x + \frac{p}{2}} \right|\).

Lời giải chi tiết:

a) Tọa độ điểm F là: \(F\left( {\frac{p}{2};0} \right)\) và phương trình đường chuẩn là: \(\Delta :x =  - \frac{p}{2}\)

b) Ta có: \(MF = \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} ,d\left( {M,\Delta } \right) = \left| {x + \frac{p}{2}} \right|\). Để M thuộc (P) thì \(MF{\rm{ }} = \;d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}}  = \left| {x + \frac{p}{2}} \right|\)


Vận dụng 2

Tại một vùng biển giữa đất liền và một đảo, người ta phân định một đường ranh giới cách đều đất liền và đảo (H.7.28). Coi bờ biển vùng đất liền đó là một đường thẳng và đảo là hình tròn. Hỏi đường ranh giới nói trên có hình gi? Vì sao?

Phương pháp giải:

Lấy d là đường thẳng song song với bờ biển cách bờ biển một khoảng bằng bán kính OA.

Lời giải chi tiết:

Gọi d là đường thẳng nằm trong đất liền, song song với bờ biển và cách bờ biển một khoảng  bằng bán kính OA.

Ta có: \(d\left( {M,d} \right) = MH + R = MA + AO = MO\)

Vậy tập hợp điểm M thuộc (P) có tiêu điểm là O. Đường chuẩn là d. Do đó đường ranh giới cần tìm là đường parabol (P).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"