Giải bài 7.36 trang 59 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:48

Đề bài

Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

 a) Tìm các giao điểm \({A_1},{A_2}\)của hypebol với trục hoành (hoành độ của \({A_1}\)nhỏ hơn của \({A_2}\)).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì \(x \le  - a\) , nêu điêm M(x, y) thuộc nhánh nằm bên phải trực tung của hypebol thì \(x \ge a\).

c) Tìm các điểm\({M_1},{M_2}\) tương ứng thuộc các nhánh bên trái, bên phải trực tung của hypebol để \({M_1}{M_2}\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

a) Tọa độ \({A_1},{A_2}\) thỏa mãn phương trình của \(\left( H \right)\) và \(y = 0\).

b) Sử dụng \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1\)

c) \({M_1}{M_2} \ge \left| {{x_2} - {x_1}} \right| \ge \left| {a - \left( { - a} \right)} \right| = 2a\)

Lời giải chi tiết

a) Các giao điểm của \(\left( H \right)\) với trục hoành có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)

b) Với \(M\left( {x;y} \right)\) thuộc (H) ta có \(\frac{{{x^2}}}{{{a^2}}} = 1 + \frac{{{y^2}}}{{{b^2}}} \ge 1 \Rightarrow {x^2} \ge {a^2} \Rightarrow \left[ \begin{array}{l}x \le  - a\\x \ge a\end{array} \right.\)

Do đó nếu \(M\left( {x;y} \right)\) thuộc bên trái trục tung khi thì \(x < 0\), suy ra \(x \le  - a\).

Nếu \(M\left( {x;y} \right)\) thuộc bên phải trục tung khi thì \(x > 0\), suy ra \(x \ge  - a\).

c) Gọi \({M_1}\left( {{x_1};{y_1}} \right),{M_2}\left( {{x_2};{y_2}} \right)\). Vì \({M_1}\) thuộc nhánh bên trái trục tung nên ta có  \({x_1} \le  - a\),\({M_2}\) thuộc nhánh bên phải trục tung nên ta có \({x_2} \ge a\).

Suy ra \({M_1}{M_2} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}  \ge \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2}+(0- 0)^2}  = \left| {{x_2} - {x_1}} \right| \ge \left| {a - \left( { - a} \right)} \right| = 2a\)

Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{y_2} - {y_1} = 0\\{x_2} = a\\{x_1} =  - a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = a\\{x_1} =  - a\\{y_1} = {y_2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{M_1}\left( { - a;0} \right)\\{M_2}\left( {a;0} \right)\end{array} \right.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"