Giải bài 7.32 trang 58 SGK Toán 10 – Kết nối tri thức

2024-09-14 10:17:49

Đề bài

Trong mặt phẳng toạ độ, cho A(1;-1), B(3; 5), C(-2; 4). Tính diện tích tam giác ABC.

Phương pháp giải - Xem chi tiết

Sử dụng công thức diện tích \({S_{ABC}} = \frac{1}{2}d\left( {A,BC} \right).BC\)

Lời giải chi tiết

Ta có \(\overrightarrow {BC}  = \left( { - 5; - 1} \right)\), suy ra \(BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {26} \), đồng thời \(\overrightarrow {{n_{BC}}}  = \left( {1; - 5} \right)\).

Mặt khác BC đi qua điểm B(3;5) nên phương trình BC là \(x - 5y + 22 = 0\)

Độ dài đường cao AH của tam giác ABC là \(AH = d\left( {A,BC} \right) = \frac{{\left| {1 - 5\left( { - 1} \right) + 22} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{28}}{{\sqrt {26} }}\)

Diện tích của tam giác ABC là \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.\frac{{28}}{{\sqrt {26} }}.\sqrt {26}  = 14\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"