HĐ Khám phá 6
Xét tính đúng sai của các mệnh đề sau:
(1) Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ;
(2) Bình phương của mọi số thực đều không âm;
(3) Có số nguyên cộng với chính nó bằng 0;
(4) Có số tự nhiên n sao cho 2n – 1 = 0.
Phương pháp giải:
Dựa vào kiến thức về mệnh đề.
Lời giải chi tiết:
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.
Thực hành 7
Sử dụng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Có một số tự nhiên mà bình phương bằng 9.
Phương pháp giải:
Viết lại mệnh đề với các kí hiệu:
+ Kí hiệu
+ Kí hiệu
Lời giải chi tiết:
a) “\(\forall x \in \mathbb{R},x + ( - x) = 0\)”
b) “\(\exists n \in \mathbb{N},{x^2} = 9\)”
Thực hành 8
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x \in \mathbb{R},{x^2} > 0\)
b) \(\exists x \in \mathbb{R},{x^2} = 5x - 4\)
c) \(\exists x \in \mathbb{Z},2x + 1 = 0\)
Phương pháp giải:
Phủ định của mệnh đề “\(\forall x \in X,P(x)\)” là “\(\exists x \in X,\overline {P(x)} \)”
Phủ định của mệnh đề “\(\exists x \in X,P(x)\)” là “\(\forall x \in X,\overline {P(x)} \)”
Lời giải chi tiết:
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”