Lý thuyết Các phép toán trên tập hợp - SGK Toán 10 Chân trời sáng tạo

2024-09-14 10:18:55

1. Hợp và giao của các tập hợp

+ Hợp của hai tập hợp A và B (kí hiệu \(A \cup B\)) là tập hợp gồm các phần tử thuộc tập hợp A hoặc thuộc T.

\(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} .\)

 

+ Giao của hai tập hợp A và B (kí hiệu \(A \cap B\)) là tập hợp gồm các phần tử thuộc cả hai tập hợp A và B.

\(A \cap B = \{ x|x \in A\) và \(x \in B\} .\)

 

+ Nhận xét: Nếu A và B là hai tập hợp hữu hạn thì

\(n(A \cup B) = n(A) + n(B) - n(A \cap B)\)

Nếu \(A \cap B = \emptyset \) thì \(n(A \cup B) = n(A) + n(B)\)

2.  Hiệu của hai tập hợp, phần bù của tập con

Hiệu của hai tập hợp A và B (kí hiệu \(A{\rm{\backslash }}B\)) là tập hợp gồm các phần tử thuộc A nhưng không thuộc B.

\(A{\rm{\backslash }}B = \{ x|x \in A\) và \(x \notin B\} .\)

 

Nếu \(A \subset E\) thì \(E{\rm{\backslash }}A\)được gọi là phần bù của A trong E, kí hiệu là \({C_E}A.\)

 

Ví dụ: \({C_\mathbb{Z}}\mathbb{N} = \mathbb{Z}{\rm{\backslash }}\mathbb{N} = \{ x|x \in \mathbb{Z}\) và \(x \notin \mathbb{N}\}  = \{ ...; - 3; - 2; - 1\} \)

Đặc biệt: \({C_S}S = \emptyset \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"