Giải bài 3 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:19:35

Đề bài

Tìm các khoảng đồng biến, nghịch biến của các hàm số sau:

a) \(f(x) =  - 5x + 2\)

b) \(f(x) = - {x^2}\)

Phương pháp giải - Xem chi tiết

Bước 1: Lấy \({x_1},{x_2} \in D\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Bước 2: Tìm điều kiện để \(f({x_1}) < f({x_2})\) và \(f({x_1}) > f({x_2})\)

a) \(f({x_1}) =  - 5{x_1} + 2,f({x_2}) =  - 5{x_2} + 2\)

b) \(f({x_1}) =  - {x_1}^2,f({x_2}) =  - {x_2}^2\)

Bước 3: Kết luận khoảng đồng biến, nghịch biến

+ \(f({x_1}) < f({x_2})\) với \(x \in {T_1}\) thì hàm số đồng biến trên khoảng \({T_1}\)

+ \(f({x_1}) > f({x_2})\) với \(x \in {T_2}\) thì hàm số nghịch biến trên khoảng \({T_2}\)

Lời giải chi tiết

a) Xét hàm số \(y =  - 5x + 2\) xác định trên \(\mathbb{R}\)

Lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do  \({x_1} < {x_2}\) nên \( - 5{x_1} >  - 5{x_2}\), suy ra \( - 5{x_1} + 2 >  - 5{x_2} + 2\)

Từ đây ta có \(f({x_1}) > f({x_2})\)

Vậy hàm số ngịch biến (giảm) trên \(\mathbb{R}\)

b) Xét hàm số \(y = f(x) =  - {x^2}\) xác định trên \(\mathbb{R}\)

+ Trên khoảng \((0; + \infty )\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in (0; + \infty )\) nên \({x_1} + {x_2} > 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) > 0\) hay \(f({x_1}) > f({x_2})\)

Vậy hàm số nghịch biến (giảm) trên khoảng \((0; + \infty )\)

+ Trên khoảng \(( - \infty ;0)\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in ( - \infty ;0)\) nên \({x_1} + {x_2} < 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) < 0\) hay \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng \(( - \infty ;0)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"