Giải mục 3 trang 45, 46, 47 SGK Toán 10 tập 1 - Chân trời sáng tạo

2024-09-14 10:19:38

HĐ Khám phá 3

Quan sát đồ thị hàm số \(y = f(x) = {x^2}\) rồi so sánh \(f({x_1})\) và \(f({x_2})\) (với \({x_1} < {x_2}\)) trong từng trường hợp sau:

Phương pháp giải:

Trên tia Oy, giá trị nào gần gốc tọa độ hơn thì nhỏ hơn.

Lời giải chi tiết:

a) \(f({x_1}) > f({x_2})\)

b) \(f({x_1}) < f({x_2})\)


Thực hành 4

a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:

 

b) Xét tính đồng biến, nghịch biến của hàm số \(y = f(x) = 5{x^2}\) trên khoảng (2; 5).

Phương pháp giải:

a) Quan sát đồ thị trên các khoảng (-3; 1), (1;3), (3;7)

Khi hàm số đồng biến trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải.

Khi hàm số nghịch biến trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.

b)

Bước 1: Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Bước 2: So sánh \(f({x_1}) = 5{x_1}^2\) và \(f({x_2}) = 5{x_2}^2\)

Bước 3: Kết luận tính đồng biến, nghịch biến

+ Nếu \(f({x_1}) < f({x_2})\) thì hàm số đồng biến trên khoảng (2; 5)

 + Nếu \(f({x_1}) > f({x_2})\) thì hàm số nghịch biến trên khoảng (2; 5)

Lời giải chi tiết:

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"