Giải mục 3 trang 63, 64 SGK Toán 10 tập 1 - Chân trời sáng tạo

2024-09-14 10:20:18

Thực hành 3

Tính:

\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)

\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)

Phương pháp giải:

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

Lời giải chi tiết:

\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {150^o} = \frac{1}{2};\tan {135^o} =  - 1;\cot {45^o} = 1.\)

\( \Rightarrow A = \frac{1}{2} - 1 + 1 = \frac{1}{2}.\)

\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\cos {30^o} = \frac{{\sqrt 3 }}{2};\tan {150^o} =  - \frac{{\sqrt 3 }}{3};\cot {135^o} =  - 1.\)

\( \Rightarrow B = 2.\frac{{\sqrt 3 }}{2} - 3.\left( { - \frac{{\sqrt 3 }}{3}} \right) + 1 = 2\sqrt 3  + 1.\)


Vận dụng 2

Tìm góc \(\alpha ({0^o} \le \alpha  \le {180^o})\) trong mỗi trường hợp sau:

a) \(\sin \alpha  = \frac{{\sqrt 3 }}{2}\)

b) \(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\)

c) \(\tan \alpha  =  - 1\)

d) \(\cot \alpha  =  - \sqrt 3 \)

Phương pháp giải:

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt để tìm góc.

Lời giải chi tiết:

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = \frac{{\sqrt 3 }}{2}\) với \(\alpha  = {60^o}\) và \(\alpha  = {120^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  =  - 1\) với \(\alpha  = {135^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha  =  - \sqrt 3 \) với \(\alpha  = {150^o}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"