Giải bài 3 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:21:04

Cho tam giác ABC có a=8,b=10,c=13. Tính các góc A^,B^,C^.

LG a

a) Tam giác ABC có góc tù không?

Phương pháp giải:

Áp dụng hệ quả của định lí cosin: cosA=b2+c2a22bc;cosB=a2+c2b22ac;cosC=a2+b2c22ab

Từ đó suy ra các góc A^,B^,C^.

Lời giải chi tiết:

Áp dụng hệ quả của định lí cosin, ta có:

 cosA=b2+c2a22bc;cosB=a2+c2b22ac{cosA=102+132822.10.13=4152>0;cosB=82+1321022.8.13=133208>0cosC=82+1021322.8.10=132<0

C^91,79>90, tam giác ABC có góc C tù.


LG b

b) Tính độ dài trung tuyến AM, diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác đó.

Phương pháp giải:

+) Tính AM:  Áp dụng định lí cosin trong tam giác ACM:

AM2=AC2+CM22.AC.CM.cosC

+) Tính diện tích:

Áp dụng công thức heron:  S=p(pa)(pb)(pc)

+) Tính R:  Áp dụng định lí sin: csinC=2RR=c2sinC

Lời giải chi tiết:

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

AM2=AC2+CM22.AC.CM.cosCAM2=82+522.8.5.(132)=91,5AM9,57

+) Ta có: p=8+10+132=15,5.

Áp dụng công thức heron, ta có: S=p(pa)(pb)(pc)=15,5.(15,58).(15,510).(15,513)40

+) Áp dụng định lí sin, ta có:

csinC=2RR=c2sinC=132.sin91,796,5


LG c

c) Lấy điểm D đối xứng với A qua C.

Phương pháp giải:

Áp dụng định lí cosin trong tam giác BCD:

BD2=CD2+CB22.CD.CB.cosBCD^

Lời giải chi tiết:

Ta có: BCD^=18091,79=88,21; CD=AC=8

Áp dụng định lí cosin trong tam giác BCD, ta có:

BD2=CD2+CB22.CD.CB.cosBCD^BD2=82+1022.8.10.cos88,21159BD12,6

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"