Giải bài 7 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:21:15

Đề bài

Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K  thỏa mãn \(\overrightarrow {KA}  + \overrightarrow {KC}  = \overrightarrow 0 ;\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 ;\overrightarrow {HA}  + \overrightarrow {HD}  + \overrightarrow {HC}  = \overrightarrow 0 \). Tính độ dài các vectơ \(\overrightarrow {KA} ,\overrightarrow {GH} ,\overrightarrow {AG} \).

Lời giải chi tiết

Ta có \(AC = AB\sqrt 2  = a\sqrt 2 \)

+) \(\overrightarrow {KA}  + \overrightarrow {KC}  = \overrightarrow 0 \),

Suy ra K là trung điểm AC \( \Rightarrow AK = \frac{1}{2}.a\sqrt 2  = \frac{{a\sqrt 2 }}{2}\)

+) \(\overrightarrow {HA}  + \overrightarrow {HD}  + \overrightarrow {HC}  = \overrightarrow 0 \), suy ra H là trọng tâm của tam giác ADC

\(\Rightarrow DH = \frac{2}{3}DK = \frac{1}{3}DB\) (1)

+) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \), suy ra G là trọng tâm của tam giác ABC

\(\Rightarrow BG = \frac{2}{3}BK = \frac{1}{3}BD\) (2)

\((1,2) \Rightarrow HG = \frac{1}{3}BD=\frac{{a\sqrt 2 }}{3}\)

Mà \(KG = KH = \frac{1}{2}HG= \frac{{a\sqrt 2 }}{6}\) (2)

\(\Rightarrow  AG = \sqrt {A{K^2} + G{K^2}}  = \sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{6}} \right)}^2}}  = \frac{{a\sqrt 5 }}{3}\)

\( \Rightarrow \left| {\overrightarrow {AG} } \right| = \frac{{a\sqrt 5 }}{3}\)

Vậy \(\left|\overrightarrow {KA}\right| =\frac{{a\sqrt 2 }}{2} ,\left|\overrightarrow {GH}\right|=\frac{{a\sqrt 2 }}{3} ,\left|\overrightarrow {AG}\right|=\frac{{a\sqrt 5 }}{3} \).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"