Giải bài 11 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:21:48

Đề bài

Một xe goòng được kéo bởi một lực \(\overrightarrow F \) có độ lớn là là 50 N, di chuyển theo quãng đường từ A đến B có chiều dài là 200 m. Cho biết góc giữa lực \(\overrightarrow F \) và \(\overrightarrow {AB} \) là \(30^\circ \) và  \(\overrightarrow F \) được phân tích thành 2 lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) (hình 3). Tính công sinh ra bởi các lực \(\overrightarrow F ,\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \).

Phương pháp giải - Xem chi tiết

Bước 1: Sử dụng các tính chất trong tam giác vuông xác định độ lớn của các lực

Bước 2: Xác định góc giữa các lực và hướng dịch chuyển

Bước 3: Sử dụng công thức \(A = \overrightarrow F .\overrightarrow d \) (với \(\overrightarrow d \) là vectơ thể hiện độ dịch chuyển và quãng đường mà vật đi được)

Lời giải chi tiết

Ta xác định được các độ lớn:

\(\left| {\overrightarrow F } \right| = 50,\left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow F } \right|\cos 30^\circ  = 50.\frac{{\sqrt 3 }}{2} = 25\sqrt 3 ,\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow F } \right|.\sin 30^\circ  = 50.\frac{1}{2} = 25\) (N)

Dựa vào hình vẽ ta có: \(\left( {\overrightarrow F ,\overrightarrow d } \right) = 30^\circ ,\left( {\overrightarrow {{F_1}} ,\overrightarrow d } \right) = 90^\circ ,\left( {\overrightarrow {{F_2}} ,\overrightarrow d } \right) = 0^\circ \)

Áp dụng công thức tính công sinh ra bởi lực \(A = \overrightarrow F .\overrightarrow d \) ta có:

\(A = \overrightarrow F .\overrightarrow d  = \left| {\overrightarrow F } \right|\left| {\overrightarrow d } \right|\cos \left( {\overrightarrow F ,\overrightarrow d } \right) = 50.200.\cos 30^\circ  = 5000 (J)\)

\({A_1} = \overrightarrow {{F_1}} .\overrightarrow d  = \left| {\overrightarrow {{F_1}} } \right|\left| {\overrightarrow d } \right|\cos \left( {\overrightarrow {{F_1}} ,\overrightarrow d } \right) = 25.200.\cos 90^\circ  = 0 (J)\)

\({A_2} = \overrightarrow {{F_2}} .\overrightarrow d  = \left| {\overrightarrow {{F_2}} } \right|\left| {\overrightarrow d } \right|\cos \left( {\overrightarrow {{F_2}} ,\overrightarrow d } \right) = 25\sqrt 3 .200.\cos 0^\circ  = 5000\sqrt 3  (J)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"