Giải bài 2 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:21:53

Đề bài

Cho hình chữ nhật ABCDO là giao điểm của hai đường chéo và AB = a, BC = 3a.

a) Tính độ dài các vectơ \(\overrightarrow {AC} ,\overrightarrow {BD} \)

b) Tìm trong hình ảnh vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\)

Phương pháp giải - Xem chi tiết

a) Bước 1: Tính độ dài AC, BD

    Bước 2: Tính độ dài vectơ \(\left| {\overrightarrow {AB} } \right| = AB\)

b) Bước 1: Tìm các đoạn thẳng có độ dài là \(\frac{{a\sqrt {10} }}{2}\)

    Bước 2: Từ các đoạn thẳng trên xác định các vecto cùng phương (giá song song hoặc trùng nhau) nhưng ngược hướng.

Lời giải chi tiết

a) Ta có:

\(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {{\left( {3a} \right)}^2}}  = a\sqrt {10} \)

+) \(\left| {\overrightarrow {AC} } \right| = AC = a\sqrt {10} \)

+) \(\left| {\overrightarrow {BD} } \right| = BD = a\sqrt {10} \)

b) O là giao điểm của hai đường chéo nên ta có:

\(AO = OC = BO = OD = \frac{{a\sqrt {10} }}{2}\)

Dựa vào hình vẽ ta thấy AO CO cùng nằm trên một đường thẳng; BO DO cùng nằm trên một đường thẳng

Suy ra các cặp vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\) là:

\(\overrightarrow {OA} \) và \(\overrightarrow {OC} \); \(\overrightarrow {AO} \) và \(\overrightarrow {CO} \); \(\overrightarrow {OB} \) và \(\overrightarrow {OD} \); \(\overrightarrow {BO} \) và \(\overrightarrow {DO} \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"