Đề bài
Cho số gần đúng \(a = 6547\) với độ chính xác \(d = 100\)
Hãy viết số quy tròn của số a và ước lượng sai số tương đối của số quy tròn đó.
Phương pháp giải - Xem chi tiết
Bước 1: Tìm hàng của chữ số khác 0 đầu tiên bên trái của d
Bước 2: Quy tròn số a ở hàng gấp 10 lần hàng tìm được.
Bước 3: Ước lượng sai số tương đối \({\delta _a} \le \frac{d}{{\left| a \right|}}\)
Lời giải chi tiết
Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác \(d = 100\) là hàng trăm, nên ta quy tròn \(a = 6547\) đến hàng nghìn.
Vậy số quy tròn của a là 7 000.
Ta có: \(6547-100<\overline a< 6547+100 \Leftrightarrow 6447 <\overline a< 6647\) nên \(6447-7000 <\overline a -7000< 6647-7000 \Leftrightarrow -553 <\overline a -7000< -353 \Rightarrow |\overline a -7000| < 553\)
Sai số tương đối là \({\delta _a} \le \frac{{553}}{{\left| {7000} \right|}} = 7,9\% \)