Giải bài 1 trang 109 SGK Toán 10 tập 1 – Chân trời sáng tạo

2024-09-14 10:21:56

Đề bài

Ở Babylon, một tấm đất sét có niên đại khoảng 1900 – 1600 trước Công nguyên đã ghi lại một phát biểu hình học, trong đó ám chỉ ước lượng số \(\pi \) bằng \(\frac{{25}}{8} = 3,1250.\) Hãy ước lượng sai số tuyệt đối và sai số tương đối của giá trị gần đúng này, biết \(3,141 < \pi  < 3,142.\)

Phương pháp giải - Xem chi tiết

Ta viết \(\overline a  = a \pm d\) (hoặc \(a \pm d\)) thì có nghĩa là số đúng \(\overline a \) nằm trong đoạn \([a - d;a + d]\)

Lời giải chi tiết

Ta có: \(3,141 < \pi  < 3,142 \Rightarrow 3,141 - 3,125 < \pi  - 3,125 < 3,142 - 3,125\)

Hay \(0,016 < \pi  - 3,125 < 0,017 \Rightarrow 0,016 < \left| {\pi  - 3,125} \right| < 0,017\)

Sai số tuyệt đối của số gần đúng 3,125:  \(0,016 < {\Delta _{3,125}} < 0,017\)

Sai số tương đối \({\delta _{3,125}} = \frac{{{\Delta _{3.125}}}}{{\left| {3,125} \right|}} < \frac{{0,017}}{{3,125}} = 0,0544\% \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"