Lý thuyết Các số đặc trưng đo mức độ phân tán của mẫu số liệu - SGK Toán 10 CTST

2024-09-14 10:22:10

1. KHOẢNG BIẾN THIÊN VÀ KHOẢNG TỨ PHÂN VỊ

a. Khoảng biến thiên

Khoảng biến thiên (R) = Giá trị lớn nhất – Giá trị nhỏ nhất.

Ý nghĩa: Dùng để đo độ phân tán của toàn bộ mẫu số liệu: Khoảng biến thiên càng lớn thì mẫu số liệu càng phân tán.

b. Khoảng tứ phân vị

Khoảng tứ phân vị:  \({\Delta _Q} = {Q_3} - {Q_1}\)

Ý nghĩa: Dùng để đo độ phân tán của một nửa các số liệu có giá trị thuộc đoạn từ \({Q_1}\) đến \({Q_3}\) trong mẫu.

Không bị ảnh hưởng bởi các giá trị bất thường.

c. Giá trị ngoại lệ

\(x\) là giá trị ngoại lệ nếu \(\left[ \begin{array}{l}x < {Q_1} - 1,5.{\Delta _Q}\\x > {Q_3} + 1,5.{\Delta _Q}\end{array} \right.\)

2. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN

Cho mẫu số liệu \({x_1},{x_2},{x_3},...,{x_n}\), số trung bình là \(\overline x \)

+ Phương sai: \({s^2} = \frac{{{{({x_1} - \overline x )}^2} + {{({x_2} - \overline x )}^2} + ... + {{({x_n} - \overline x )}^2}}}{n} = \frac{1}{n}({x_1}^2 + {x_2}^2 + ... + {x_n}^2) - {\overline x ^2}\)

+ Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)

Ý nghĩa: Nếu số liệu càng phân tán thì phương sai và độ lệch chuẩn càng lớn

Chú ý: Phương sai của mẫu số liệu cho dạng bảng tần số:

\({s^2} = \frac{{{m_1}{{({x_1} - \overline x )}^2} + {m_2}{{({x_2} - \overline x )}^2} + ... + {m_k}{{({x_k} - \overline x )}^2}}}{n}\)

Với \({m_i}\) là tần số của giá trị \({x_i}\) và \(n = {m_1} + {m_2} + ... + {m_k}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"