Giải mục 2 trang 16, 17 SGK Toán 10 tập 2 - Chân trời sáng tạo

2024-09-14 10:22:32

HĐ Khám phá 2

Lời giải cho phương trình \(\sqrt { - {x^2} + x + 1}  = x\) như sau đúng hai sai?

\(\)\(\sqrt { - {x^2} + x + 1}  = x\)               

\( \Rightarrow  - {x^2} + x + 1 = {x^2}\)  (bình phương cả hai vế để làm mất dấu căn)

\( \Rightarrow  - 2{x^2} + x + 1 = 0\)   (chuyển vế, rút gọn)

\( \Rightarrow x = 1\) hoặc \(x =  - \frac{1}{2}\) (giải phương trình bậc hai)

Vậy phương trình đã cho có hai nghiệm là 1 và \( - \frac{1}{2}\)

Phương pháp giải:

Thay nghiệm tìm được vào phương trình ban đầu ta có:

+) Thay \(x = 1\) vào phương trình \(\sqrt { - {x^2} + x + 1}  = x\) ta thấy thảo mãn phương trình

+) Thay \(x =  - \frac{1}{2}\) vào \(\sqrt { - {x^2} + x + 1}  = x\) ta thấy không thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x = 1\), suy ra lời giải như trên là sai.


Thực hành 2

Giải phương trình \(\sqrt {3{x^2} + 27x - 41}  = 2x + 3\)

Phương pháp giải:

Bước 1: Bình phương hai vế của phương trình để làm mất dấu căn

Bước 2: Chuyển vế, rút gọn đưa về phương trình bậc hai một ẩn

Bước 3: Giải phương trình nhận được ở bước 2

Bước 4: Thử lại và kết luận

Lời giải chi tiết:

Bình phương hai vế của phương trình đã cho, ta được:

\(3{x^2} + 27x - 41 = {\left( {2x + 3} \right)^2}\)

\( \Rightarrow 3{x^2} + 27x - 41 = 4{x^2} + 12x + 9\)

\( \Rightarrow {x^2} - 15x + 50 = 0\)

\( \Rightarrow x = 5\) và \(x = 10\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {3{x^2} + 27x - 41}  = 2x + 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = 5\) và \(x = 10\)


Vận dụng

Cho tam giác OAB OBC lần lượt vuông tại A B như hình 1. Các cạnh AB BC bằng nhau và ngắn hơn OB là 1 cm. Hãy biểu diễn độ dài OC OA qua OB, từ đó xác định OB để:

a) \(OC = 3OA;\)

b) \(OC = \frac{5}{4}OB\)

Phương pháp giải:

Bước 1: Sử dụng giả thiết và áp dụng định lý pitago để biểu diễn độ dài OC OA qua OB

Bước 2: Lập phương trình theo giả thiết \(OC = 3OA;\)\(OC = \frac{5}{4}OB\)

Bước 3: Giải phương trình

Lời giải chi tiết:

Gọi độ dài cạnh OB x cm \(\left( {x > 0} \right)\)

Theo giả thiết ta có \(AB = BC = OB - 1 = x - 1\)

Áp dụng định lý pitago trong tam giác vuông OAB OBC ta có:

\(OC = \sqrt {O{B^2} + B{C^2}}  = \sqrt {{x^2} + {{\left( {x - 1} \right)}^2}}  = \sqrt {2{x^2} - 2x + 1} \)

\(OA = \sqrt {O{B^2} - A{B^2}}  = \sqrt {{x^2} - {{\left( {x - 1} \right)}^2}}  = \sqrt {2x - 1} \)

a) \(OC = 3OA \Rightarrow \sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = 9\left( {2x - 1} \right)\\ \Rightarrow 2{x^2} - 20x + 10 = 0\end{array}\)

\( \Rightarrow \)\(x = 5 - 2\sqrt 5 \) và \(x = 5 + 2\sqrt 5 \)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \) ta thấy cả hai đều thỏa mãn phương trình

Vậy khi \(OB = 5 - 2\sqrt 5 \) hoặc \(OB = 5 + 2\sqrt 5 \)thì \(OC = 3OA\)

b) \(OC = \frac{5}{4}OB \Rightarrow \sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = \frac{{25}}{{16}}{x^2}\\ \Rightarrow \frac{7}{{16}}{x^2} - 2x + 1 = 0\end{array}\)\(\)

\( \Rightarrow x = \frac{4}{7}\) hoặc \(x = 4\)                

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy khi \(OB = \frac{4}{7}\) hoặc \(OB = 4\) (cm) thì  \(OC = \frac{5}{4}OB\)                        

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"