Giải bài 2 trang 32 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:22:50

Đề bài

Từ các chữ số sau đây, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

a) 1; 2; 3; 4; 5; 6

b) 0; 1; 2; 3; 4; 5

Phương pháp giải - Xem chi tiết

a) Tính chỉnh hợp chập 4 của 6

b)       Bước 1: Chọn một chữ số làm chữ số hàng nghìn (khác 0)

          Bước 2: Chọn 3 chữ số còn lại và sắp xếp chúng

          Bước 3: Áp dụng quy tắc nhân

Lời giải chi tiết

a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:

                   \(A_6^4 = 6.5.4.3 = 360\) (số)

b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn

          Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)

          Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:

                             \(A_5^3 = 5.4.3 = 60\) (cách)

Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :

                             \(5.60 = 300\) (số)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"