Giải bài 9 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:23:13

Đề bài

Trong mặt phẳng Oxy cho điểm \(S(x;y)\) di động trên đường thẳng \(d:12x - 5y + 16 = 0\). Tính khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S.

Phương pháp giải - Xem chi tiết

Khi M nằm trên đường thẳng d thì khoảng ngắn nhất là đoạn vuông góc

Lời giải chi tiết

Điểm S nằm trên đường thẳng d , nên khi S di động trên đoạn thẳng d thì SM ngắn nhất khi \(SM \bot d\)

Nên khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S  là khoảng cách từ điểm \(M(5;10)\) đến d

Khoảng cách đó là: \(d\left( {M,d} \right) = \frac{{\left| {12.5 - 5.10 + 16} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)

Vậy khi S di động trên đường thẳng d thì khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là 2.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"