Giải bài 3 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:23:22

Đề bài

Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

a) \(M(2;5),N(1;2),P(5;4)\)

b) \(A(0;6),B(7;7),C(8;0)\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tâm của đường tròn (điểm cách đều ba đỉnh của tam giác, là giao điểm của 3 đường trung trực)

Bước 2: Tính bán kính của đường tròn (là khoảng cách từ tâm đến một trong ba đỉnh)

Bước 3: Viết phương trình đường tròn \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) với tâm \(I(a;b)\) và bán kính R

Lời giải chi tiết

a) Gọi A,B lần lượt là trung điểm của MN, MP ta có: \(A\left( {\frac{3}{2};\frac{7}{2}} \right),B\left( {\frac{7}{2};\frac{9}{2}} \right)\)

Đường trung trực \(\Delta \)của đoạn  thẳng MN  là đường thẳng đi qua  \(A\left( {\frac{3}{2};\frac{7}{2}} \right)\) và nhận vt \(\overrightarrow {MN}  = ( - 1; - 3)\) làm vt pháp tuyến, nên có phương trình  \( - x - 3y + 12 = 0\)

Đường trung trực d của đoạn thẳng MP  là đường thẳng đi qua  \(B\left( {\frac{7}{2};\frac{9}{2}} \right)\) và nhận vt \(\overrightarrow {MP}  = (3; - 1)\) làm vt pháp tuyến, nên có phương trình  \(3x - y - 6 = 0\)

\(\Delta \) cắt d tại điểm \(I(3;3)\) cách đều ba điểm M, N, P suy ra đường tròn (C) cần tìm có tâm \(I(3;3)\) và có bán kính \(R = IM = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

b) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{7}{2};\frac{{13}}{2}} \right),N\left( {4;3} \right)\)

Đường trung trực \(\Delta \)của đoạn  thẳng AB là đường thẳng đi qua  \(M\left( {\frac{7}{2};\frac{{13}}{2}} \right)\) và nhận vt \(\overrightarrow {BA}  = ( - 7; - 1)\) làm vt pháp tuyến, nên có phương trình  \( - 7x - y + 31 = 0\)

Đường trung trực d của đoạn thẳng AC  là đường thẳng đi qua  \(N\left( {4;3} \right)\) và nhận vt \(\overrightarrow {AC}  = (8; - 6)\) làm vt pháp tuyến, nên có phương trình  \(8x - 6y - 14 = 0\)

\(\Delta \) cắt d tại điểm \(I(4;3)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(4;3)\) và có bán kính \(R = IA = 5\). Vậy (C) có phương trình: \({\left( {x - 4} \right)^2} + {\left( {y - 3} \right)^2} = 25\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"