Giải mục 3 trang 68, 69, 70 SGK Toán 10 tập 2 - Chân trời sáng tạo

2024-09-14 10:23:31

HĐ Khám phá 5

Trong mặt phẳng Oxy, cho điểm \(F\left( {0;\frac{1}{2}} \right)\), đường thẳng \(\Delta :y + \frac{1}{2} = 0\) và điểm \(M(x;y)\). Để tìm hệ thức giữa xy sao cho \(M\) cách đều  F và \(\Delta \), một học sinh đã làm như sau:

+) Tính MF MH (với H là hình chiếu của M trên \(\Delta \)):

\(MF = \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}} ,MH = d\left( {M,\Delta } \right) = \left| {y + \frac{1}{2}} \right|\)

+) Điều kiện để M cách đều F  và \(\Delta \):

\(\begin{array}{l}MF = d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}}  = \left| {y + \frac{1}{2}} \right|\\ \Leftrightarrow {x^2} + {\left( {y - \frac{1}{2}} \right)^2} = {\left( {y + \frac{1}{2}} \right)^2}\\ \Leftrightarrow {x^2} = 2y \Leftrightarrow y = \frac{1}{2}{x^2}\left( * \right)\end{array}\)

Hãy cho biết tên đồ thị (P) của hàm số (*) vừa tìm được.

Lời giải chi tiết:

Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết b c tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.


HĐ Khám phá 6

Cho parabol (P) có tiêu điểm F  và đường chuẩn \(\Delta \). Gọi khoảng cách từ tiêu điểm đến đường chuẩn là p, hiển nhiên \(p > 0\)

Chọn hệ trục tọa độ Oxy sao cho \(F\left( {\frac{p}{2};0} \right)\) và \(\Delta :x + \frac{p}{2} = 0\)

Xét điểm \(M(x;y)\)

a) Tính MF và \(d\left( {M,\Delta } \right)\)

b) Giải thích biểu thức sau:

\(M(x;y) \in (P) \Leftrightarrow \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}}  = \left| {x + \frac{p}{2}} \right|\)

Phương pháp giải:

Sử dụng phương pháp tọa độ trong mặt phẳng

Lời giải chi tiết:

a) Ta có: \(\overrightarrow {FM}  = \left( {x - \frac{p}{2};y} \right) \Rightarrow MF = \left| {\overrightarrow {FM} } \right| = \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} \)

\(d\left( {M,\Delta } \right) = \frac{{\left| {x + \frac{p}{2}} \right|}}{1} = \left| {x + \frac{p}{2}} \right|\)

b) M thuộc parabol (P) nên M cách đều F và \(\Delta \)

Suy ra \(MF = d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}}  = \left| {x - \frac{p}{2}} \right|\)


Thực hành 3

Viết phương trình chính tắc của parabol (P) có đường chuẩn \(\Delta :x + 1 = 0\)

Phương pháp giải:

Bước 1: Từ phương trình đường chuẩn tìm tọa độ của tiêu điểm (phương trình đường chuẩn có dạng \(x + \frac{p}{2} = 0\)

Bước 2: Viết phương trình chính tắc của parabol có dạng \({y^2} = 2px\) với \(M(x;y) \in (P)\)

Lời giải chi tiết:

Từ phương trình đường chuẩn \(\Delta :x + 1 = 0\) ta có tiêu điểm \(F\left( {1;0} \right)\)

Phương trình chính tắc của parabol có dạng \({y^2} = 2x\)


Vận dụng 3

Một cổng chào có hình parabol cao 10 m và bề rộng của cổng tại chân cổng là 5 m. Tính bề rộng của cổng tại chỗ cách đỉnh 2 m

Phương pháp giải:

Bước 1: Gọi phương trình của parabol một cách tổng quát

Bước 2: Thay các giả thiết tìm tiêu điểm

Bước 3: Thay \(x = 2\) vào phương trình chính tắc tìm y

Lời giải chi tiết:

Vẽ lại parabol và chọn hệ trục tọa độ như hình dưới

Gọi phương trình của parabol là \({y^2} = 2px\)

Ta có chiều cao của cổng \(OH = BK = 10\), chiều rộng tại chân cổng \(BD = 2BH = 5\)

Vậy điểm B có tọa độ là \(B\left( {10;\frac{5}{2}} \right)\)

Thay tọa độ điểm B vào phương trình parabol ta có:

\({\left( {\frac{5}{2}} \right)^2} = 2p.10 \Rightarrow p = \frac{5}{{16}}\), suy ra phương trình parabol có dạng \({y^2} = \frac{5}{8}x\)

Thay \(x = 2\) vào phương trình \({y^2} = \frac{5}{8}x\) ta tìm được \(y = \frac{{\sqrt 5 }}{2}\)

Vậy bề rộng của cổng tại chỗ cách đỉnh 2 m là \(\sqrt 5 \) m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"