Giải bài 14 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:23:43

Đề bài

Viết phương trình chính tắc của parabol thỏa mãn từng điều kiện sau:

a) Tiêu điểm \((4;0)\)

b) Đường chuẩn có phương trình \(x =  - \frac{1}{6}\)

c) Đi qua điểm \((1;4)\)

d) Khoảng cách từ tiêu điểm đến đường chuẩn bằng 8

Phương pháp giải - Xem chi tiết

a,b)    Bước 1: Xác định p

                   +) Tiêu điểm có tọa độ \(F\left( {\frac{p}{2};0} \right)\)

                   +) Đường chuẩn có phương trình \(\Delta :x + \frac{p}{2} = 0\)

          Bước 2: Viết phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

c)       Bước 1: Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

          Bước 2: Thay tọa độ điểm trên tìm p

          Bước 3: Xác định phương trình chính tắc

d)       Bước 1: Gọi tiêu điểm và phương trình đường chuẩn tổng quát

          Bước 2: Từ khoảng cách tìm p

          Bước 3: Xác định phương trình chính tắc \({y^2} = 2px\)

Lời giải chi tiết

a) Tiêu điểm có tọa độ \((4;0)\) nên ta có \(p = 8\)

Suy ra phương trình chính tắc của parabol là: \({y^2} = 16x\)

b) Đường chuẩn có phương trình \(x =  - \frac{1}{6}\), nên ta có \(p =  - \frac{1}{3}\)

Suy ra phương trình chính tắc của parabol có dạng \({y^2} =  - \frac{2}{3}x\)

c) Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

Thay tọa độ điểm \((1;4)\) vào phương trình \({y^2} = 2px\) ta có:

\({4^2} = 2p.1 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)

d) Gọi \(F\left( {\frac{p}{2};0} \right)\), \(\Delta :x + \frac{p}{2} = 0\) lần lượt là tiêu điểm và phương trình đường chuẩn của parabol ta có:

\(d\left( {F,\Delta } \right) = \frac{{\left| {\frac{p}{2} + \frac{p}{2}} \right|}}{1} = 8 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"