Giải bài 7 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:23:45

Đề bài

Lập phương trình đường tròn trong các trường hợp sau:

a) Có tâm \(I( - 2;4)\) và bán kính bằng 9

b) Có tâm \(I(1;2)\) và đi qua điểm \(A(4;5)\)

c) Đi qua hai điểm \(A(4;1),B(6;5)\) và có tâm nằm trên đường thẳng \(4x + y - 16 = 0\)

d) Đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b

Phương pháp giải - Xem chi tiết

a) Với tâm là \(I(a;b)\) và bán kính R, phương trình đường tròn có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)

b)       Bước 1: Xác định bán kính (khoảng cách IA)

          Bước 2: Viết phương trình như câu a)

c)       Bước 1: Từ phương trình mà tâm nằm trên đó, gọi tọa độ tâm qua một ẩn

          Bước 2; Giải phương trình IA=IB tìm tọa độ điểm I (với I là tâm đường tròn)

          Bước 3: Viết phương trình đường tròn như câu a)

d)       Bước 1: Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))

          Bước 2: Thay tọa độ các điểm theo giả thiết vào phương trình, xác định m, n, p)

          Bước 3: Xác định phương trình đường tròn

Lời giải chi tiết

a) Ta có phương trình đường tròn là \(({C_1}):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Ta có: \(\overrightarrow {IA}  = (3;3) \Rightarrow IA = 3\sqrt 2  = R\)

Suy ra phương trình đường tròn là; \({C_2}:{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 18\)

c) Vì tâm đường tròn nằm trên đường thẳng \(4x + y - 16 = 0\) nên có tọa độ \(I\left( {a;16 - 4a} \right)\)

Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} ,IB = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)

A, B thuộc đường tròn nên \(IA = IB \Rightarrow \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}}  = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)

\(\begin{array}{l} \Rightarrow {\left( {a - 4} \right)^2} + {\left( {16 - 4a - 1} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {16 - 4a - 5} \right)^2}\\ \Rightarrow {\left( {a - 4} \right)^2} + {\left( {15 - 4a} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {11 - 4a} \right)^2}\\ \Rightarrow  - 28a =  - 84 \Rightarrow a = 3\end{array}\)

Suy ra tâm đường tròn là \(I(3;4)\), bán kính \(R = IA = \sqrt {10} \)

Phương trình đường tròn trên là \(({C_3}):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 10\)

d) Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))

Đường tròn đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b nên ta có hệ phương trình:

Ta có điều kiện \(a,b \ne 0\), vì khi bằng 0 thì trùng với gốc tọa độ

\(\left\{ \begin{array}{l}{0^2} + {0^2} - 2m.0 - 2n.0 + p = 0\\{a^2} + {0^2} - 2ma - 2n.0 + p = 0\\{0^2} + {b^2} - 2m.0 - 2nb + p = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\{a^2} - 2ma = 0\\{b^2} - 2nb = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\m = \frac{a}{2}\\n = \frac{b}{2}\end{array} \right.\)

Vậy phương trình chính tắc của đường tròn trên là \({x^2} + {y^2} - ax - by = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"