Giải bài 2 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

2024-09-14 10:23:47

Đề bài

Cho ABCD là hai dây cung vuông góc tại E của đường tròn (O) .Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ mặt phẳng để chứng minh EF vuông góc với DB

Phương pháp giải - Xem chi tiết

Bước 1: Xét với đường tròn bất kì, cho tọa độ các điểm A, B, C, D

Bước 2: Xác định tọa độ điểm E, F

Bước 3: Tính \(\overrightarrow {EF} .\overrightarrow {DB} \), suy ra vuông góc

Lời giải chi tiết

Xét với đường tròn (O) có phương trình \((O):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 25\)

Cho các điểm \(A(0;0),B(0;8),C(8;4),D( - 2;4)\) nằm trên đường tròn (O) và thỏa mãn AB vuông góc với CD

Phương trình đường thẳng đi qua hai điểm A, B có dạng \(x = 0\)

Phương trình đường thẳng đi qua hai điểm C, D có dạng \(y = 4\)

Ta có AB vuông góc với CD tại điểm E nên tọa độ điểm E là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x = 0\\y = 4\end{array} \right. \Leftrightarrow E(0;4)\)

Gọi tọa độ của điểm F là: \(F(x;y)\)

ACEF là hình chữ nhật nên \(\overrightarrow {AF}  = \overrightarrow {EC} \), mặt khác ta có: \(\overrightarrow {AF}  = (x;y),\overrightarrow {EC}  = \left( {8;0} \right)\)

Suy ra tọa độ điểm F là: \(F\left( {8;0} \right)\)

\(\overrightarrow {EF}  = \left( {8; - 4} \right),\overrightarrow {DB}  = \left( {2;4} \right) \Rightarrow \overrightarrow {EF} .\overrightarrow {BD}  = 8.2 + \left( { - 4} \right).4 = 0 \Rightarrow \overrightarrow {EF}  \bot \overrightarrow {BD} \)

Vậy ta chứng minh được EF vuông góc với DB

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"